Multiscale entropy analysis of Brazilian agricultural commodities price dynamics

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9832

Keywords:

Agricultural market; Multiscale entropy; Food crisis.

Abstract

During the last decade there were several consecutive periods of upsurge and decline of commodity prices. Price formation in agricultural markets is the result of many factors such as crude oil prices, exchange rates, biofuel demand, speculation in commodity futures markets, countries’ aggressive stockpiling policies, trade restrictions and economic growth.  The diversity of these factors as well as the occurrence of extreme socio-political events yields a market with complex price evolution. This paper uses time dependent multiscale entropy method to analyze the evolution of Brazilian agricultural commodities prices movements at different temporal scales during the period from March 2006 to March 2016. We found that the entropy of both volatility and return series decreases as the temporal scale increases, indicating more regular price fluctuations and the loss of pattern diversity in long term trends. In general, volatilities series are more regular than return series as indicated by lower entropy values. By applying multiscale entropy in moving windows, we found that during the crisis the entropy of price fluctuations decreases indicating higher regularity and consequently lower efficiency in agricultural commodities market.  The effect is more pronounced for volatility series and for higher temporal scales.

References

Albarracín., E. S., Gamboa, J. C. R., Marques, E. C. M., & Stosic, T. (2019). Complexity analysis of Brazilian agriculture and energy market. Physica A: Statistical Mechanics and Its Applications, 523, 933–941. https://doi.org/10.1016/j.physa.2019.04.134

Alvarez-Ramirez, J., Rodriguez, E., & Alvarez, J. (2012). A multiscale entropy approach for market efficiency. International Review of Financial Analysis, 21, 64–69. https://doi.org/10.1016/j.irfa.2011.12.001

Balasis, G., Daglis, I. A., Papadimitriou, C., Kalimeri, M., Anastasiadis, A., & Eftaxias, K. (2009). Investigating dynamical complexity in the magnetosphere using various entropy measures. Journal of Geophysical Research: Space Physics, 114(A9), n/a-n/a. https://doi.org/10.1029/2008JA014035

Bellemare, M. F. (2015). Rising food prices, food price volatility, and social unrest. American Journal of Agricultural Economics, 97(1), 1–21.

Cai, X. J., Fang, Z., Chang, Y., Tian, S., & Hamori, S. (2020). Co-movements in commodity markets and implications in diversification benefits. Empirical Economics, 58(2), 393–425. https://doi.org/10.1007/s00181-018-1551-3

Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6), 068102. https://doi.org/10.1103/PhysRevLett.89.068102

Darbellay, G. A., & Wuertz, D. (2000). The entropy as a tool for analysing statistical dependences in financial time series. Physica A: Statistical Mechanics and Its Applications, 287(3–4), 429–439. https://doi.org/10.1016/S0378-4371(00)00382-4

Gao, Q. W., Liu, W. Y., Tang, B. P., & Li, G. J. (2018). A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine. Renewable Energy, 116, 169–175. https://doi.org/10.1016/j.renene.2017.09.061

He, L.-Y., & Chen, S.-P. (2011). Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis. Physica A: Statistical Mechanics and Its Applications, 390(2), 297–308. https://doi.org/10.1016/j.physa.2010.09.018

Hernández-Pérez, R., Guzmán-Vargas, L., Ramírez-Rojas, A., & Angulo-Brown, F. (2010). Pattern synchrony in electrical signals related to earthquake activity. Physica A: Statistical Mechanics and Its Applications, 389(6), 1239–1252. https://doi.org/10.1016/j.physa.2009.11.036

Kristoufek, L., Janda, K., & Zilberman, D. (2012). Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective. Energy Economics, 34(5), 1380–1391. https://doi.org/10.1016/j.eneco.2012.06.016

Kristoufek, L., & Vosvrda, M. (2014). Commodity futures and market efficiency. Energy Economics, 42, 50–57. https://doi.org/10.1016/j.eneco.2013.12.001

Lima, C. R. A., de Melo, G. R., Stosic, B., & Stosic, T. (2019). Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar. Physica A: Statistical Mechanics and Its Applications, 513, 687–693. https://doi.org/10.1016/j.physa.2018.08.080

Liu, C., & Gao, R. (2017). Multiscale entropy analysis of the differential RR interval time series signal and its application in detecting congestive heart failure. Entropy, 19(6). https://doi.org/10.3390/e19060251

Liu, L. (2014). Cross-correlations between crude oil and agricultural commodity markets. Physica A: Statistical Mechanics and Its Applications, 395, 293–302. https://doi.org/10.1016/j.physa.2013.10.021

Martina, E., Rodriguez, E., Escarela-Perez, R., & Alvarez-Ramirez, J. (2011). Multiscale entropy analysis of crude oil price dynamics. Energy Economics, 33(5), 936–947. https://doi.org/10.1016/j.eneco.2011.03.012

Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023

Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Human Brain Mapping, 40(2), 538–551. https://doi.org/10.1002/hbm.24393

Nazlioglu, S., & Soytas, U. (2011). World oil prices and agricultural commodity prices: Evidence from an emerging market. Energy Economics, 33(3), 488–496. https://doi.org/10.1016/j.eneco.2010.11.012

Nazlioglu, S., & Soytas, U. (2012). Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis. Energy Economics, 34(4), 1098–1104. https://doi.org/10.1016/j.eneco.2011.09.008

Pal, D., & Mitra, S. K. (2018). Interdependence between crude oil and world food prices: A detrended cross correlation analysis. Physica A: Statistical Mechanics and Its Applications, 492, 1032–1044. https://doi.org/10.1016/j.physa.2017.11.033

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1. ed.). Santa Maria, RS: UFSM, NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Richman, J. S. S., Moorman, J. R. R., Funke, G. J., Knott, B. A., Salas, E., Pavlas, D., Strang, A. J., Gilmour, T. P., Piallat, B., Lieu, C. A., Venkiteswaran, K., Rao, A. N., Petticoffer, A. C., Berk, M. A., & Androulakis, P. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Shuangcheng, L., Qiaofu, Z., Shaohong, W., & Erfu, D. (2006). Measurement of climate complexity using sample entropy. International Journal of Climatology, 26(15), 2131–2139. https://doi.org/10.1002/joc.1357

Smith, T. G. (2014). Feeding unrest: disentangling the causal relationship between food price shocks and sociopolitical conflict in urban Africa. Journal of Peace Research, 51(6), 679–695.

Sternberg, T. (2012). Chinese drought, bread and the Arab Spring. Applied Geography, 34, 519–524. https://doi.org/10.1016/j.apgeog.2012.02.004

Stosic, D., Stosic, D., Ludermir, T., & Stosic, T. (2016). Correlations of multiscale entropy in the FX market. Physica A: Statistical Mechanics and Its Applications, 457, 52–61. https://doi.org/10.1016/j.physa.2016.03.099

Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of commodities networks. The European Physical Journal B, 74(2), 243–249. https://doi.org/10.1140/epjb/e2010-00079-4

Tadesse, G., Algieri, B., Kalkuhl, M., & von Braun, J. (2014). Drivers and triggers of international food price spikes and volatility. Food Policy, 47, 117–128. https://doi.org/10.1016/j.foodpol.2013.08.014

Tiwari, A. K., Khalfaoui, R., Solarin, S. A., & Shahbaz, M. (2018). Analyzing the time-frequency lead–lag relationship between oil and agricultural commodities. Energy Economics, 76, 470–494. https://doi.org/10.1016/j.eneco.2018.10.037

Wang, Y., Rhoads, B. L., Wang, D., Wu, J., & Zhang, X. (2018). Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. Journal of Hydrology, 558, 184–195. https://doi.org/10.1016/j.jhydrol.2018.01.027

Weng, W.-C., Chang, C.-F., Wong, L. C., Lin, J.-H., Lee, W.-T., & Shieh, J.-S. (2017). Altered resting-state EEG complexity in children with Tourette syndrome: A preliminary study. Neuropsychology, 31(4), 395–402. https://doi.org/10.1037/neu0000363

Xavier, S. F. A., da Silva Jale, J., Stosic, T., dos Santos, C. A. C., & Singh, V. P. (2019). An application of sample entropy to precipitation in Paraíba State, Brazil. Theoretical and Applied Climatology, 136(1–2), 429–440. https://doi.org/10.1007/s00704-018-2496-3

Xiarchos, I. M., & Burnett, J. W. (2018). Dynamic volatility spillovers between agricultural and energy commodities. Journal of Agricultural and Applied Economics, 50(3), 291–318. https://doi.org/10.1017/aae.2017.34

Zhao, Z., & Yang, S. (2012). Sample entropy-based roller bearing fault diagnosis method. Journal of Vibration and Shock, 31(6), 136–140.

Zunino, L., Tabak, B. M., Serinaldi, F., Zanin, M., Pérez, D. G., & Rosso, O. A. (2011). Commodity predictability analysis with a permutation information theory approach. Physica A: Statistical Mechanics and Its Applications, 390(5), 876–890. https://doi.org/10.1016/j.physa.2010.11.020

Downloads

Published

22/11/2020

How to Cite

FARIAS, D. B. C. .; SILVA, A. S. A. da .; STOSIC, T.; STOSIC, B. Multiscale entropy analysis of Brazilian agricultural commodities price dynamics. Research, Society and Development, [S. l.], v. 9, n. 11, p. e4739119832, 2020. DOI: 10.33448/rsd-v9i11.9832. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9832. Acesso em: 9 jan. 2025.

Issue

Section

Exact and Earth Sciences