Multiscale entropy analysis of Brazilian agricultural commodities price dynamics
DOI:
https://doi.org/10.33448/rsd-v9i11.9832Keywords:
Agricultural market; Multiscale entropy; Food crisis.Abstract
During the last decade there were several consecutive periods of upsurge and decline of commodity prices. Price formation in agricultural markets is the result of many factors such as crude oil prices, exchange rates, biofuel demand, speculation in commodity futures markets, countries’ aggressive stockpiling policies, trade restrictions and economic growth. The diversity of these factors as well as the occurrence of extreme socio-political events yields a market with complex price evolution. This paper uses time dependent multiscale entropy method to analyze the evolution of Brazilian agricultural commodities prices movements at different temporal scales during the period from March 2006 to March 2016. We found that the entropy of both volatility and return series decreases as the temporal scale increases, indicating more regular price fluctuations and the loss of pattern diversity in long term trends. In general, volatilities series are more regular than return series as indicated by lower entropy values. By applying multiscale entropy in moving windows, we found that during the crisis the entropy of price fluctuations decreases indicating higher regularity and consequently lower efficiency in agricultural commodities market. The effect is more pronounced for volatility series and for higher temporal scales.
References
Albarracín., E. S., Gamboa, J. C. R., Marques, E. C. M., & Stosic, T. (2019). Complexity analysis of Brazilian agriculture and energy market. Physica A: Statistical Mechanics and Its Applications, 523, 933–941. https://doi.org/10.1016/j.physa.2019.04.134
Alvarez-Ramirez, J., Rodriguez, E., & Alvarez, J. (2012). A multiscale entropy approach for market efficiency. International Review of Financial Analysis, 21, 64–69. https://doi.org/10.1016/j.irfa.2011.12.001
Balasis, G., Daglis, I. A., Papadimitriou, C., Kalimeri, M., Anastasiadis, A., & Eftaxias, K. (2009). Investigating dynamical complexity in the magnetosphere using various entropy measures. Journal of Geophysical Research: Space Physics, 114(A9), n/a-n/a. https://doi.org/10.1029/2008JA014035
Bellemare, M. F. (2015). Rising food prices, food price volatility, and social unrest. American Journal of Agricultural Economics, 97(1), 1–21.
Cai, X. J., Fang, Z., Chang, Y., Tian, S., & Hamori, S. (2020). Co-movements in commodity markets and implications in diversification benefits. Empirical Economics, 58(2), 393–425. https://doi.org/10.1007/s00181-018-1551-3
Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6), 068102. https://doi.org/10.1103/PhysRevLett.89.068102
Darbellay, G. A., & Wuertz, D. (2000). The entropy as a tool for analysing statistical dependences in financial time series. Physica A: Statistical Mechanics and Its Applications, 287(3–4), 429–439. https://doi.org/10.1016/S0378-4371(00)00382-4
Gao, Q. W., Liu, W. Y., Tang, B. P., & Li, G. J. (2018). A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine. Renewable Energy, 116, 169–175. https://doi.org/10.1016/j.renene.2017.09.061
He, L.-Y., & Chen, S.-P. (2011). Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis. Physica A: Statistical Mechanics and Its Applications, 390(2), 297–308. https://doi.org/10.1016/j.physa.2010.09.018
Hernández-Pérez, R., Guzmán-Vargas, L., Ramírez-Rojas, A., & Angulo-Brown, F. (2010). Pattern synchrony in electrical signals related to earthquake activity. Physica A: Statistical Mechanics and Its Applications, 389(6), 1239–1252. https://doi.org/10.1016/j.physa.2009.11.036
Kristoufek, L., Janda, K., & Zilberman, D. (2012). Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective. Energy Economics, 34(5), 1380–1391. https://doi.org/10.1016/j.eneco.2012.06.016
Kristoufek, L., & Vosvrda, M. (2014). Commodity futures and market efficiency. Energy Economics, 42, 50–57. https://doi.org/10.1016/j.eneco.2013.12.001
Lima, C. R. A., de Melo, G. R., Stosic, B., & Stosic, T. (2019). Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar. Physica A: Statistical Mechanics and Its Applications, 513, 687–693. https://doi.org/10.1016/j.physa.2018.08.080
Liu, C., & Gao, R. (2017). Multiscale entropy analysis of the differential RR interval time series signal and its application in detecting congestive heart failure. Entropy, 19(6). https://doi.org/10.3390/e19060251
Liu, L. (2014). Cross-correlations between crude oil and agricultural commodity markets. Physica A: Statistical Mechanics and Its Applications, 395, 293–302. https://doi.org/10.1016/j.physa.2013.10.021
Martina, E., Rodriguez, E., Escarela-Perez, R., & Alvarez-Ramirez, J. (2011). Multiscale entropy analysis of crude oil price dynamics. Energy Economics, 33(5), 936–947. https://doi.org/10.1016/j.eneco.2011.03.012
Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023
Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Human Brain Mapping, 40(2), 538–551. https://doi.org/10.1002/hbm.24393
Nazlioglu, S., & Soytas, U. (2011). World oil prices and agricultural commodity prices: Evidence from an emerging market. Energy Economics, 33(3), 488–496. https://doi.org/10.1016/j.eneco.2010.11.012
Nazlioglu, S., & Soytas, U. (2012). Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis. Energy Economics, 34(4), 1098–1104. https://doi.org/10.1016/j.eneco.2011.09.008
Pal, D., & Mitra, S. K. (2018). Interdependence between crude oil and world food prices: A detrended cross correlation analysis. Physica A: Statistical Mechanics and Its Applications, 492, 1032–1044. https://doi.org/10.1016/j.physa.2017.11.033
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1. ed.). Santa Maria, RS: UFSM, NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Richman, J. S. S., Moorman, J. R. R., Funke, G. J., Knott, B. A., Salas, E., Pavlas, D., Strang, A. J., Gilmour, T. P., Piallat, B., Lieu, C. A., Venkiteswaran, K., Rao, A. N., Petticoffer, A. C., Berk, M. A., & Androulakis, P. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039
Shuangcheng, L., Qiaofu, Z., Shaohong, W., & Erfu, D. (2006). Measurement of climate complexity using sample entropy. International Journal of Climatology, 26(15), 2131–2139. https://doi.org/10.1002/joc.1357
Smith, T. G. (2014). Feeding unrest: disentangling the causal relationship between food price shocks and sociopolitical conflict in urban Africa. Journal of Peace Research, 51(6), 679–695.
Sternberg, T. (2012). Chinese drought, bread and the Arab Spring. Applied Geography, 34, 519–524. https://doi.org/10.1016/j.apgeog.2012.02.004
Stosic, D., Stosic, D., Ludermir, T., & Stosic, T. (2016). Correlations of multiscale entropy in the FX market. Physica A: Statistical Mechanics and Its Applications, 457, 52–61. https://doi.org/10.1016/j.physa.2016.03.099
Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of commodities networks. The European Physical Journal B, 74(2), 243–249. https://doi.org/10.1140/epjb/e2010-00079-4
Tadesse, G., Algieri, B., Kalkuhl, M., & von Braun, J. (2014). Drivers and triggers of international food price spikes and volatility. Food Policy, 47, 117–128. https://doi.org/10.1016/j.foodpol.2013.08.014
Tiwari, A. K., Khalfaoui, R., Solarin, S. A., & Shahbaz, M. (2018). Analyzing the time-frequency lead–lag relationship between oil and agricultural commodities. Energy Economics, 76, 470–494. https://doi.org/10.1016/j.eneco.2018.10.037
Wang, Y., Rhoads, B. L., Wang, D., Wu, J., & Zhang, X. (2018). Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. Journal of Hydrology, 558, 184–195. https://doi.org/10.1016/j.jhydrol.2018.01.027
Weng, W.-C., Chang, C.-F., Wong, L. C., Lin, J.-H., Lee, W.-T., & Shieh, J.-S. (2017). Altered resting-state EEG complexity in children with Tourette syndrome: A preliminary study. Neuropsychology, 31(4), 395–402. https://doi.org/10.1037/neu0000363
Xavier, S. F. A., da Silva Jale, J., Stosic, T., dos Santos, C. A. C., & Singh, V. P. (2019). An application of sample entropy to precipitation in Paraíba State, Brazil. Theoretical and Applied Climatology, 136(1–2), 429–440. https://doi.org/10.1007/s00704-018-2496-3
Xiarchos, I. M., & Burnett, J. W. (2018). Dynamic volatility spillovers between agricultural and energy commodities. Journal of Agricultural and Applied Economics, 50(3), 291–318. https://doi.org/10.1017/aae.2017.34
Zhao, Z., & Yang, S. (2012). Sample entropy-based roller bearing fault diagnosis method. Journal of Vibration and Shock, 31(6), 136–140.
Zunino, L., Tabak, B. M., Serinaldi, F., Zanin, M., Pérez, D. G., & Rosso, O. A. (2011). Commodity predictability analysis with a permutation information theory approach. Physica A: Statistical Mechanics and Its Applications, 390(5), 876–890. https://doi.org/10.1016/j.physa.2010.11.020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Djalma Beltrão Costa Farias; Antonio Samuel Alves da Silva; Tatijana Stosic; Borko Stosic
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.