Análisis de entropía multiescala de la dinámica de precios de productos agrícolas brasileños

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9832

Palabras clave:

Mercado agricola; Entropía multiescala; Crisis alimentaria.

Resumen

Durante la última década, ha habido varios períodos consecutivos de aumento y disminución de los precios de los productos básicos. La formación de precios en los mercados agrícolas es el resultado de muchos factores, como los precios del petróleo crudo, los tipos de cambio, la demanda de biocombustibles, la especulación en los mercados de futuros de productos básicos, las políticas agresivas de almacenamiento de los países, las restricciones comerciales y el crecimiento económico. La diversidad de estos factores, así como la ocurrencia de eventos sociopolíticos extremos, producen un mercado con una evolución de precios compleja. Este documento utiliza el método de entropía multiescala dependiente del tiempo para analizar la evolución de los movimientos de los precios de produtos agrícolas en Brasil en diferentes escalas temporales durante el período comprendido entre marzo de 2006 y marzo de 2016. Descubrimos que la entropía de las series de volatilidad y rendimiento disminuye a medida que aumenta la escala temporal, lo que indica fluctuaciones de precios más regulares y la pérdida de diversidad de patrones en las tendencias a largo plazo. Al aplicar la entropía de escala múltiple en ventanas móviles descubrimos que durante la crisis la entropía de las fluctuaciones de precios disminuye, lo que indica una mayor regularidad y, en consecuencia, una menor eficiencia en el mercado de productos agrícolas. El efecto es más pronunciado para series de volatilidad y para escalas temporales más altas.

Citas

Albarracín., E. S., Gamboa, J. C. R., Marques, E. C. M., & Stosic, T. (2019). Complexity analysis of Brazilian agriculture and energy market. Physica A: Statistical Mechanics and Its Applications, 523, 933–941. https://doi.org/10.1016/j.physa.2019.04.134

Alvarez-Ramirez, J., Rodriguez, E., & Alvarez, J. (2012). A multiscale entropy approach for market efficiency. International Review of Financial Analysis, 21, 64–69. https://doi.org/10.1016/j.irfa.2011.12.001

Balasis, G., Daglis, I. A., Papadimitriou, C., Kalimeri, M., Anastasiadis, A., & Eftaxias, K. (2009). Investigating dynamical complexity in the magnetosphere using various entropy measures. Journal of Geophysical Research: Space Physics, 114(A9), n/a-n/a. https://doi.org/10.1029/2008JA014035

Bellemare, M. F. (2015). Rising food prices, food price volatility, and social unrest. American Journal of Agricultural Economics, 97(1), 1–21.

Cai, X. J., Fang, Z., Chang, Y., Tian, S., & Hamori, S. (2020). Co-movements in commodity markets and implications in diversification benefits. Empirical Economics, 58(2), 393–425. https://doi.org/10.1007/s00181-018-1551-3

Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6), 068102. https://doi.org/10.1103/PhysRevLett.89.068102

Darbellay, G. A., & Wuertz, D. (2000). The entropy as a tool for analysing statistical dependences in financial time series. Physica A: Statistical Mechanics and Its Applications, 287(3–4), 429–439. https://doi.org/10.1016/S0378-4371(00)00382-4

Gao, Q. W., Liu, W. Y., Tang, B. P., & Li, G. J. (2018). A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine. Renewable Energy, 116, 169–175. https://doi.org/10.1016/j.renene.2017.09.061

He, L.-Y., & Chen, S.-P. (2011). Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis. Physica A: Statistical Mechanics and Its Applications, 390(2), 297–308. https://doi.org/10.1016/j.physa.2010.09.018

Hernández-Pérez, R., Guzmán-Vargas, L., Ramírez-Rojas, A., & Angulo-Brown, F. (2010). Pattern synchrony in electrical signals related to earthquake activity. Physica A: Statistical Mechanics and Its Applications, 389(6), 1239–1252. https://doi.org/10.1016/j.physa.2009.11.036

Kristoufek, L., Janda, K., & Zilberman, D. (2012). Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective. Energy Economics, 34(5), 1380–1391. https://doi.org/10.1016/j.eneco.2012.06.016

Kristoufek, L., & Vosvrda, M. (2014). Commodity futures and market efficiency. Energy Economics, 42, 50–57. https://doi.org/10.1016/j.eneco.2013.12.001

Lima, C. R. A., de Melo, G. R., Stosic, B., & Stosic, T. (2019). Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar. Physica A: Statistical Mechanics and Its Applications, 513, 687–693. https://doi.org/10.1016/j.physa.2018.08.080

Liu, C., & Gao, R. (2017). Multiscale entropy analysis of the differential RR interval time series signal and its application in detecting congestive heart failure. Entropy, 19(6). https://doi.org/10.3390/e19060251

Liu, L. (2014). Cross-correlations between crude oil and agricultural commodity markets. Physica A: Statistical Mechanics and Its Applications, 395, 293–302. https://doi.org/10.1016/j.physa.2013.10.021

Martina, E., Rodriguez, E., Escarela-Perez, R., & Alvarez-Ramirez, J. (2011). Multiscale entropy analysis of crude oil price dynamics. Energy Economics, 33(5), 936–947. https://doi.org/10.1016/j.eneco.2011.03.012

Mensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023

Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Human Brain Mapping, 40(2), 538–551. https://doi.org/10.1002/hbm.24393

Nazlioglu, S., & Soytas, U. (2011). World oil prices and agricultural commodity prices: Evidence from an emerging market. Energy Economics, 33(3), 488–496. https://doi.org/10.1016/j.eneco.2010.11.012

Nazlioglu, S., & Soytas, U. (2012). Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis. Energy Economics, 34(4), 1098–1104. https://doi.org/10.1016/j.eneco.2011.09.008

Pal, D., & Mitra, S. K. (2018). Interdependence between crude oil and world food prices: A detrended cross correlation analysis. Physica A: Statistical Mechanics and Its Applications, 492, 1032–1044. https://doi.org/10.1016/j.physa.2017.11.033

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1. ed.). Santa Maria, RS: UFSM, NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Richman, J. S. S., Moorman, J. R. R., Funke, G. J., Knott, B. A., Salas, E., Pavlas, D., Strang, A. J., Gilmour, T. P., Piallat, B., Lieu, C. A., Venkiteswaran, K., Rao, A. N., Petticoffer, A. C., Berk, M. A., & Androulakis, P. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Shuangcheng, L., Qiaofu, Z., Shaohong, W., & Erfu, D. (2006). Measurement of climate complexity using sample entropy. International Journal of Climatology, 26(15), 2131–2139. https://doi.org/10.1002/joc.1357

Smith, T. G. (2014). Feeding unrest: disentangling the causal relationship between food price shocks and sociopolitical conflict in urban Africa. Journal of Peace Research, 51(6), 679–695.

Sternberg, T. (2012). Chinese drought, bread and the Arab Spring. Applied Geography, 34, 519–524. https://doi.org/10.1016/j.apgeog.2012.02.004

Stosic, D., Stosic, D., Ludermir, T., & Stosic, T. (2016). Correlations of multiscale entropy in the FX market. Physica A: Statistical Mechanics and Its Applications, 457, 52–61. https://doi.org/10.1016/j.physa.2016.03.099

Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of commodities networks. The European Physical Journal B, 74(2), 243–249. https://doi.org/10.1140/epjb/e2010-00079-4

Tadesse, G., Algieri, B., Kalkuhl, M., & von Braun, J. (2014). Drivers and triggers of international food price spikes and volatility. Food Policy, 47, 117–128. https://doi.org/10.1016/j.foodpol.2013.08.014

Tiwari, A. K., Khalfaoui, R., Solarin, S. A., & Shahbaz, M. (2018). Analyzing the time-frequency lead–lag relationship between oil and agricultural commodities. Energy Economics, 76, 470–494. https://doi.org/10.1016/j.eneco.2018.10.037

Wang, Y., Rhoads, B. L., Wang, D., Wu, J., & Zhang, X. (2018). Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. Journal of Hydrology, 558, 184–195. https://doi.org/10.1016/j.jhydrol.2018.01.027

Weng, W.-C., Chang, C.-F., Wong, L. C., Lin, J.-H., Lee, W.-T., & Shieh, J.-S. (2017). Altered resting-state EEG complexity in children with Tourette syndrome: A preliminary study. Neuropsychology, 31(4), 395–402. https://doi.org/10.1037/neu0000363

Xavier, S. F. A., da Silva Jale, J., Stosic, T., dos Santos, C. A. C., & Singh, V. P. (2019). An application of sample entropy to precipitation in Paraíba State, Brazil. Theoretical and Applied Climatology, 136(1–2), 429–440. https://doi.org/10.1007/s00704-018-2496-3

Xiarchos, I. M., & Burnett, J. W. (2018). Dynamic volatility spillovers between agricultural and energy commodities. Journal of Agricultural and Applied Economics, 50(3), 291–318. https://doi.org/10.1017/aae.2017.34

Zhao, Z., & Yang, S. (2012). Sample entropy-based roller bearing fault diagnosis method. Journal of Vibration and Shock, 31(6), 136–140.

Zunino, L., Tabak, B. M., Serinaldi, F., Zanin, M., Pérez, D. G., & Rosso, O. A. (2011). Commodity predictability analysis with a permutation information theory approach. Physica A: Statistical Mechanics and Its Applications, 390(5), 876–890. https://doi.org/10.1016/j.physa.2010.11.020

Descargas

Publicado

22/11/2020

Cómo citar

FARIAS, D. B. C. .; SILVA, A. S. A. da .; STOSIC, T.; STOSIC, B. Análisis de entropía multiescala de la dinámica de precios de productos agrícolas brasileños. Research, Society and Development, [S. l.], v. 9, n. 11, p. e4739119832, 2020. DOI: 10.33448/rsd-v9i11.9832. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9832. Acesso em: 9 ene. 2025.

Número

Sección

Ciencias Exactas y de la Tierra