Genetic bases related to the development of non-syndromic dental agenesis: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9882

Keywords:

Genetics ; Mutation ; Dental anomaly.

Abstract

Non-syndromic dental agenesis is characterized as the most common developmental anomaly in humans, causing the lack of one or more teeth, in deciduous or permanent dentition. Mutations in specific genes of dental development are pointed as etiological factors of this anomaly. To perform this work, two electronic databases were consulted to conduct a literature survey, including PubMed and BVS. The descriptor "Anodontia" was used in both. The articles were filtered from 2010 to 2020, including full texts, in english, portuguese and spanish. Dissertations, theses and book chapters were discarded. In PubMed, from 508 articles found, 13 were included for review. In the BVS, from 304 articles found, 07 were included for review, totaling 20 articles. Studies have shown that mutations by nucleotide subitusing and deletion were more present in genes that cause dental agenesis (PAX9, MSX1, AXIN2, WNT). In epidemiologic studies, women showed greater involvement than men, both in deciduous and permanent dentition, in a ratio of 3:2. In addition, leukoderms showed greater involvement than melanoderms. Knowledge of the genotype-phenotype correlation between mutations and dental agenesis is important for the dental surgeon, as it assists in diagnosis, genetic counseling, treatment and prognosis. 

References

Alshahrani, I., Togoo, RA., & Alqarni, MA. (2013). A Review of Hypodontia: Classification, Prevalence, Etiology, Associated Anomalies, Clinical Implications and Treatment Options. World Journal of Dentistry, 4 (2), 117-125. Doi: 10.5005/jp-journals-10015-1216

Alsoleihat, F., & Khraisat, A. (2014). Hypodontia: Prevalence and pattern amongstthe living Druze population – A Near Easterngenetic isolate. HOMO - Journal of Comparative Human Biology, 65, 201–213. Doi: 10.1016/j.jchb.2014.03.003.

Brook, AH. (1974). Dental anomalies of number, form and size: their prevalence in British schoolchildren. Journal of the International Association of Dentistry for Children, 5(2), 37-53. PMID: 4535299.

Bock, N C., Lenz, S., Ruiz-Heiland, GS., & Ruf, S. (2017). Non-syndromic oligodontia Does the Tooth Agenesis Code (TAC) enable prediction of the causative mutation? J Orofac Orthop. 78, 112–120. Doi: 10.1007 / s00056-016-0056-y

Carvalho, LCF., & Tavano, O. (2008). Agenesias dentais em fissurados do Centro Pró-Sorriso – Universidade José do Rosário Vellano. Revista Gaúcha de Odontologia, 56 (1), 39-45. Retrieved from: https://pesquisa.bvsalud.org/portal/resource/pt/lil-482684

Chhabra, N., Goswami, M., & Chhabra, A. (2014). Genetic basis of dental agenesis—molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal, 19, 112–119. Doi: 10,4317 / medoral.19158

Chishti, MS., Muhammad, D., Haider, M., & Ahmad, W. (2006). A novel missense mutation in MSX1 underlies autosomal recessive oligodontia with associated dental anomalies in Pakistani families. Journal of Human Genetics, 51 (10), 872–878. Doi: 10.1007 / s10038-006-0037-x

Chung, CJ., Han, JH., & Kim, KH. (2008). The pattern and prevalence of hypodontia in Koreans. Oral Diseases, 14 (7), 620-5. Doi: 10.1111 / j.1601-0825.2007.01434.x

Daugaard-Jensen, J., Nodal, M., Skovgaard, LT., & Kjaer, I. (1997). Comparison of the pattern of agenesis in the primary and permanent dentitions in a population characterized by agenesis in the primary dentition. International Journal of Paediatric Dentistry, 7 (3), 143-8. Doi: 10.1046 / j.1365-263x.1997.00230.x

Dinckan, N., Du, R., Petty, LE., Coban-Akdemir, Z., Jhangiani, SN., Paine, I., Baugh, EH., Erdem, AP., Kavserili, H., Doddapaneni, H., Hu, J., Muzny, DM., Boerwinkle, E., Gibbs, RA., Lupski, JR., Uyguner, OZ., Below, JE., & Letra, A. (2018). Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. Journal of Dental Research. 97(1), 49-59. Doi: 10.1177 / 0022034517724149

Faber, J. (2006). Oligodontia. Revista Dental Press Ortodontia Ortopedia Facial. 11 (2), 16-17. Retrieved from: https://www.scielo.br/scielo.php?pid=S1415-54192006000200003&script=sci_arttext

Gene. (2010). MSX1 msh homeobox 1 [Homo sapiens]. USA NCBI. Retrieved from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=4487

Gene. (2010). PAX9 paired box 9 [ Homo sapiens ]. USA: NCBI. Retrieved from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=5083

Gomes, RR., Fonseca, JAC., Paula, LM., Faber, J., & Acevedo, AC. (2010). Prevalence of hypodontia in orthodontic patients in Brasilia, Brazil. European Journal of Orthodontics. 32, 302–306. Doi: 10.1093 / ejo / cjp107

Gracco, ALT., Zanatta, S., Valvecchi, FF., Bignotti, D., Perri, A., & Baciliero, F. (2017). Prevalence of dental agenesis in a sample of Italian orthodontic patients: an epidemiological study. Progress in Orthodontics, 18, 3. Doi: 10.1186 / s40510-017-0186-9

Harris, EF., & Clark, LL. (2008). Hypodontia: An epidemiologic study of American black and white people. American Journal of Orthodontics and Dentofacial Orthopedics, 134, 761-67. Doi: 10.1016 / j.ajodo.2006.12.019

Kim, JW,, Simmer, JP., Lin, BPJ., & Hu, JCC. (2006). Novel MSX1 frameshift causes autosomal-dominant oligodontia. Journal of Dental Research, 85 (3), 267-271. Doi: 10.1177 / 154405910608500312

Kirzioğlu, Z., Köseler Sentut, T., Ozay Ertürk, MS., & Karayilmaz, H. (2005). Clinical features of hypodontia and associated dental anomalies: a retrospective study. Oral Diseases,11 (6), 399-404. Doi: 10.1111 / j.1601-0825.2005.01138.x

Klein, ML., Nieminem, P., & Lammi, L. (2005). Novel mutation of the initiation codon of PAX9 causes oligodontia. Journal of Dental Research, 84 (1), 43-47. Doi: 10.1177 / 154405910508400107

Klein, OD., Oberoi, S., Huysseune, A., Hovorakova, M., Peterka, M., & Peterkova, R. (2013). Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 163, 318–332. Doi: 10.1002 / ajmg.c.31382

Kramer, PF., Feldens, CA., Ferreira, SH., Spiguel, MH., & Feldens, EG. (2008). Dental anomalies and associated factors in 2- to 5-year-old Brazilian children. International Journal of Paediatric Dentistry,18 (6), 434-40. Doi: 10.1111 / j.1365-263X.2008.00918.x

Lai, PY., & Seow, WK. (1989). A controlled study of the association of various dental anomalies with hypodontia of permanent teeth. Pediatric Dentistry, 11 (4), 291-6. Doi: 10.14219 / jada.archive.2008.0132

Liu, H., Ding, T., Zhan, Y., & Feng, H. (2015). A Novel AXIN2 Missense Mutation Is Associated with Non-Syndromic Oligodontia. PLoS ONE, 10(9), 0138221. Doi: 10.1371 / journal.pone.0138221

Mattheeuws, N., Dermaut, L., & Martens, G. (2004). Has hypodontia increased in Caucasians during the 20th century? A meta-analysis. European Journal of Orthodontics, 26 (1), 99-103. Doi: 10.1093 / ejo / 26.1.99

Mostowska, A., Biedziak, B., Zadurska, M., Matuszewska-Trojan, S., & Jagodziński, PP. (2015). WNT10 Acoding variants and maxillary lateral incisor agenesis with associated dental anomalies. Eur J Oral Sci, 123, 1–8. Doi: 10.1111 / eos.12165

Noor, A., Windpassinger, C., Vitcu, I., Orlic, M., Rafiq, M. A., Khalid, M., Malik, M. N., Ayub, M., Alman, B., & Vincent, J. B. (2009). Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. American journal of human genetics, 84(4), 519–523. Doi: 10.1016 / j.ajhg.2009.03.007

Paixão-Côrtes, VR., Braga, T., Salzano, FM., Mundstock, K., Mundstock, CA., & Bortolini, MC. (2011). PAX9 and MSX1 transcription factor genes in non-syndromic dental agenesis. Archives of Oral Biology. 5 6, 3 37 – 3 44. Doi: 10.1016 / j.archoralbio.2010.10.020

Pereira, AS et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB / NTE / UFSM. Retrieved from: https://repositorio.ufsm.br/ bitstream / handle / 1/15824 / Lic_ Computacao_Metodologia- Pesquisa-Cientifica.pdf? sequência = 1 .

Perry, GH., Verrelli, BC., & Stone AC. (2006). Molecular evolution of the primate developmental genes MSX1 and PAX9. Molecular Biology and Evolution, 23 (3), 644–654. Doi: 10.1093 / molbev / msj072

Peters, H., & Balling, R. (1999). Teeth: where and how to make them. Trends in Genetics. 15,59-65. Doi: 10.1016 / s0168-9525 (98) 01662-x

Polder, BJ., Van't Hof, MA., Van der Linden, FP., & Kuijpers-Jagtman, AM. (2004). A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dentistry and Oral Epidemiology, 32 (3), 217-26. Doi: 10.1111 / j.1600-0528.2004.00158.x

Reddy, NA., Adusumilli, G., Devanna, R., Pichai, S., Rohra, MG., & Arjunan, S. (2013). Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. Journal of International Oral Health, 5(5), 20-6. PMCID: PMC3845280

Ribeiro, LNS., Ferreira, P., Paula-Silva, FWG., & Queiroz, AM. (2011). Aspectos Clínicos E Moleculares Da Agenesia Dentária Congênita. Revista de Odontologia da Universidade Cidade de São Paulo, 23 (2) 96-106. Retrieved from: http://arquivos.cruzeirodosuleducacional.edu.br/principal/old/revista_odontologia/pdf/maio_agosto_2011/unicid_23_96_106.pdf

Ruiz-Heiland, G., Lenz, S., Bock, N., & Ruf, S. (2018). Prevalence of WNT10A gene mutations in non-syndromic oligodontia. Clinical Oral Investigations, 23 (7), 3103-3113. Doi: 10.1007 / s00784-018-2731-4

Safari, S., Ebadifar, A., Najmabadi, H., Kamali, K., & Abedini, SS.(2020). Screening PAX9, MSX1 and WNT10A Mutations in 4 Iranian Families with Non-Syndromic Tooth Agenesis. Avicenna J Med Biotech, 12(4), 236-240. PMCID: PMC7502159

Salama, FS., & Abdel-Megid, FY. (1994). Hypodontia of primary and permanent teeth in a sample of Saudi children. Egyptian Dental Journal, 40 (1), 625-32. PMID: 9588147

Salvi, A., Giacopuzzi, E., Bardellini, E., Amadori, F., Ferrari, L., De Petro, G., Borsani, G., & Majorana, A. (2016). Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. International Journal of Molecular Medicine. 38, 1338-1348. Doi: 10.3892 / ijmm.2016.2742

Sarkar, L., & Sharpe, PT. (1999). Expression of Wnt signalling pathway genes during tooth development. Mechanisms of Development. 85, 197-200. Doi: 10.1016 / s0925-4773 (99) 00095-7

Šerý, O., Bonczek, O., Hloušková, A., Černochová, P., Vaněk, J., Míšek, I., Krejčí, K., & Izakovičová Hollá, L. (2015). A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene. European Journal of Oral Sciences, 123 (2), 65–71. Doi: 10.1111 / eos.12170

Suda, N., Ogawa, T., Kojima, T., Saito, C., & Moriyama, K. (2011). Non-syndromic oligodontia with a novel mutation of PAX9. Journal of Dental Research, 90 (3), 382-6. Doi: 10.1177 / 0022034510390042

Tallón-Walton, V., Nieminen, P., Arte, S., Carvalho-Lobato, P., Ustrell-Torrent, JM., & Manzanares-Céspedes, MC. (2010). An epidemiological study of dental agenesis in a primary health area in Spain: Estimated prevalence and associated factors. Med Oral Patol Oral Cir Bucal, 15 (4), 569-74. Doi: 10.4317 / medoral.15.e569

Tatematsu, T., Kimura, M., Nakashima, M., Machida, J., Yamaguchi, S., Shibata, A., Goto, H., Nakayama, A., Higashi, Y., Miyachi, H., Shimozato, K., Matsumoto, N., & Tokita, Y. (2015) An Aberrant Splice Acceptor Site Due to a Novel Intronic Nucleotide Substitution in MSX1 Gene Is the Cause of Congenital Tooth Agenesis in a Japanese Family. PLoS ONE, 10 (6), 0128227. Doi: 10.1371 / journal.pone.0128227

Vastardis, H. (2000). The genetics of human tooth agenesis: New discoveries for understanding dental anomalies. American Journal of Orthodontics and Dentofacial Orthopedics, 177, 650-56. PMID: 10842107

Wang, Y., Kong, H., Mues, G., & D'Souza, R. (2011). Mutações Msx1. Journal of Dental Research, 90 (3), 311-316.

Xin, T., Zhang, T., Li, Q., Yu, T., Zhu, Y., Yang, R., & Zhou, Y. (2018). A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway.

Stem Cell Research & Therapy, 9 (1), 221. Doi: 10.1186 / s13287-018-0965-3

Yonezu, T., Hayashi, Y., Sasaki, J., & Machida Y. (1997). Prevalence of congenital dental anomalies of the deciduous dentition in Japanese children. The Bulletin of Tokyo Dental College, 38 (1), 27-32. PMID: 21462766

Yu, M., Wong, SW., Han, D., & Cai, T. (2019). Genetic analysis: Wnt and other pathways in non-syndromic tooth agenesis. Oral Desease. 25 (3): 646-651. Doi: 10.1111 / odi.12931

Zhang, SJ., & Wu, ZZ. (2016). WNT10A polymorphism may be a risk factor for non-syndromic hypodontia. Genet Mol Res. 24; 15(1). Doi: 10.4238 / gmr.15016033

Zhang, W., Qu, HC., & Zhang, Y. (2014). Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia: meta-analysis. Genetics and Molecular research, 13 (4), 10007-10016. Doi: 10.4238 / 2014. 28 de novembro

Downloads

Published

11/11/2020

How to Cite

SILVA, I. D. da .; LUIZ , C. C. S. P. .; BACHESK , A. B. .; BALASSA , B. da S. . Genetic bases related to the development of non-syndromic dental agenesis: a literature review . Research, Society and Development, [S. l.], v. 9, n. 11, p. e2449119882, 2020. DOI: 10.33448/rsd-v9i11.9882. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9882. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences