Fit of probability distributions to monthly precipitation in the state of Pernambuco – Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9894

Keywords:

Monthly rainfall; Pernambuco; Probability distributions.

Abstract

This study aimed to identify probability distribution that best fit monthly rainfall data for the state of Pernambuco - Brazil. The fits of six 2-parameters probability distributions were analyzed: gamma (GAM), log normal (LNORM), Weibull (WEI), Generalized Pareto (GP), Gumbel (GUM) and normal (NORM) for monthly rainfall data of 40 rainfall stations across the state of Pernambuco, from 1988 to 2017 (30 years). The Maximum Likelihood (ML) method was used to estimate the model parameters and the model selection was based on a modification of the Shapiro-Wilk statistic. The results showed the 2-parameters distributions are flexible enough to describe monthly precipitation data for the state of Pernambuco and the log normal, gamma, Weibull and GP models fitted better to the data. The Gumbel and normal models rarely adjusted to the data regardless of the month analyzed.

References

Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of Engineering and Environmental Sciences, 24(6), 419-428.

Ashkar, F., & Aucoin, F. (2012). Choice between competitive pairs of frequency models for use in hydrology: a review and some new results. Hydrological sciences journal, 57(6), 1092-106. https://doi.org/10.1080/02626667.2012.701746

Ashkar, F., & Ba, I. (2017). Selection between the generalized Pareto and kappa distributions in peaks-over-threshold hydrological frequency modelling. Hydrological Sciences Journal, 62(7), 1167-1180. https://doi.org/10.1080/02626667.2017.1302089

Ashkar, F., & Tatsambon, C. N. (2007). Revisiting some estimation methods for the generalized Pareto distribution. Journal of Hydrology, 346(3-4), 136-143.

https://doi.org/10.1016/j.jhydrol.2007.09.007

Ashkar, F., Arsenault, M., & Zoglat, A. (1997). On the discrimination between statistical distributions for hydrological frequency analysis. In The 1997 Annual Conference of the Canadian Society for Civil Engineering. Part 3(of 7), Sherbrooke, Can, 05/27-30/97 (pp. 169-178).

Ashkar, F., Ba, I., & Dieng, B. B. (2019, May). Hydrological Frequency Analysis: Some Results on Discriminating between the Gumbel or Weibull Probability Distributions and Other Competing Models. In World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management (pp. 374-387). Reston, VA: American Society of Civil Engineers.

Bermudez, V.A.B.; Abilgos, A.B.B.; Cuaresma, D.C.N. & Rabajante, J.F (2017). Probability Distribution of Philippine Daily Rainfall Data. Preprints, 2017120150. https://doi.org/10.20944/preprints201712.0150.v1

Bjureland, W., Johansson, F., Sjölander, A., Spross, J., & Larsson, S. (2019). Probability distributions of shotcrete parameters for reliability-based analyses of rock tunnel support. Tunnelling and Underground Space Technology, 87, 15-26.

https://doi.org/10.1016/j.tust.2019.02.002

Bolfarine, H., & Sandoval, M. C. (2001). Introdução à inferência estatística (Vol. 2). São Paulo: SBM.

Brito, S., Marengo, J., & Coutinho, M. (2017). Reduction of vulnerability to disasters: from knowledge to action. Climate change and drought in Brazil (pp. 361-376).São Paulo: Editora RIMA.

Chang, T. P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272-282. https://doi.org/10.1016/j.apenergy.2010.06.018

Cheng, K. S., Chiang, J. L., & Hsu, C. W. (2007). Simulation of probability distributions commonly used in hydrological frequency analysis. Hydrological Processes: An International Journal, 21(1), 51-60. https://doi.org/10.1002/hyp.6176

Elsherpieny, E. A., Muhammed, H. Z., & Radwan, N. U. M. M. (2017). On discriminating between gamma and log-logistic distributions in case of progressive type II censoring. Pakistan Journal of Statistics and Operation Research, 157-183. https://doi.org/10.18187/pjsor.v13i1.1524

Haberlandt, U., & Radtke, I. (2014). Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows. Hydrology and Earth System Sciences 18 (2014), Nr. 1, 18(1), 353-365. http://dx.doi.org/10.5194/hess-18-353-2014

Hussain, Z., Mahmood, Z., & Hayat, Y. (2010). Modeling the daily rainfall amounts of north-west Pakistan for agricultural planning. Sarhad J. Agric, 27(2), 313-321.

IBGE (2020). Instituto Brasileiro de Geografia e Estatística. Recuperado de https://www.ibge.gov.br/

Li, Z., Brissette, F., & Chen, J. (2013). Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, 27(25), 3718-3729. https://doi.org/10.1002/hyp.9499

Lundgren, W. J. C., SOUzA, I. D., & NETTO, A. (2015). Uso de distribuições de probabilidades para ajuste aos dados de precipitação mensal do estado de Sergipe. Revista Brasileira de Geografia Física, 8(01), 071-080.

Mazucheli, J., & Emanuelli, I. P. (2019). The Nakagami Distribution Applied in Precipitation Data Analysis. Revista Brasileira de Meteorologia, 34(1), 1-7. https://doi.org/10.1590/0102-77863340011

McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).

Netto, A. D. O. A., Souza, I. F. D., & Lundgren, W. J. C. (2010). Comparação entre distribuições de probabilidades da precipitação mensal no estado de Pernambuco. Scientia Plena, 6(6).

Papalexiou, S. M., & Koutsoyiannis, D. (2012). Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 45, 51-57. https://doi.org/10.1016/j.advwatres.2011.11.007

Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, (187), 253-318. https://doi.org/10.1098/rsta.1896.0007

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-pesquisa-Cientifica. pdf.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.

Royston, J. P. (1982). Algorithm AS 181: the W test for normality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(2), 176-180. https://doi.org/10.2307/2347986

Royston, J. P. (1982). An extension of Shapiro and Wilk's W test for normality to large samples. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(2), 115-124. https://doi.org/10.2307/2347973

Royston, P. (1995). Remark AS R94: A remark on algorithm AS 181: The W-test for normality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 44(4), 547-551. https://doi.org/10.2307/2986146

Santana, L. I. T., Silva, A. S. A., Menezes, R. S. C., & Stosic, T. (2020). Recurrence quantification analysis of monthly rainfall time series in Pernambuco, Brazil. Research, Society and Development, 9(9). e637997737. https://doi.org/10.33448/rsd-v9i9.7737

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611. https://doi.org/10.2307/2333709

Sharma, M. A., & Singh, J. B. (2010). Use of probability distribution in rainfall analysis. New York Science Journal, 3(9), 40-49.

Sijbers, J., den Dekker, A. J., Scheunders, P., & Van Dyck, D. (1998). Maximum-likelihood estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging, 17(3), 357-361. https://doi.org/10.1109/42.712125

Silva, A. S. A. da, Menezes, R. S. C., Telesca, L., Stosic, B., & Stosic, T (2020). Fisher Shannon analysis of drought/wetness episodes along a rainfall gradient in Northeast Brazil. International Journal of Climatology, 1-14. https://doi.org/10.1002/joc.6834

Singh, V. P. (1987). On application of the Weibull distribution in hydrology. Water Resources Management, 1(1), 33-43. https://doi.org/10.1007/BF00421796

Stern, R. D., & Coe, R. (1982). The use of rainfall models in agricultural planning. Agricultural Meteorology, 26(1), 35-50. https://doi.org/10.1016/0002-1571(82)90056-5

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1

Zhu, B., Chen, J., & Chen, H. (2019). Performance of multiple probability distributions in generating daily precipitation for the simulation of hydrological extremes. Stochastic Environmental Research and Risk Assessment, 33(8-9), 1581-1592. https://doi.org/10.1007/s00477-019-01720-z

Published

22/11/2020

How to Cite

XIMENES, P. de S. M. P. .; SILVA, A. S. A. da; ASHKAR, F.; STOSIC, T. Fit of probability distributions to monthly precipitation in the state of Pernambuco – Brazil. Research, Society and Development, [S. l.], v. 9, n. 11, p. e4869119894, 2020. DOI: 10.33448/rsd-v9i11.9894. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9894. Acesso em: 5 nov. 2024.

Issue

Section

Exact and Earth Sciences