Ajuste de las distribuciones de probabilidad a la precipitación mensual en el estado de Pernambuco – Brasil
DOI:
https://doi.org/10.33448/rsd-v9i11.9894Palabras clave:
Precipitación mensual; Pernambuco; Distribuciones de probabilidad.Resumen
Este estudio tuvo como objetivo identificar los modelos de distribución de probabilidad que mejor se ajustan a los datos de precipitación mensual para el estado de Pernambuco - Brasil. Se analizaron los ajustes de seis distribuciones de probabilidad de 2 parámetros: gamma (GAM), log normal (LNORM), Weibull (WEI), Pareto generalizado (PG), Gumbel (GUM) y normal (NORM) para los datos de precipitación mensual. 40 estaciones pluviométricas distribuidas en el estado de Pernambuco, en el período de 1988 - 2017 (30 años). Se utilizó el método de máxima verosimilitud (ML) para estimar los parámetros del modelo y la selección del modelo se basó en una modificación del estadístico de Shapiro-Wilk. Los resultados mostraron que las distribuciones de 2 parámetros son lo suficientemente flexibles para describir los datos de precipitación mensual para el estado de Pernambuco y que los modelos log normal, gamma, Weibull y PG se ajustan mejor a los datos. Los modelos Gumbel y normal rara vez se ajustan a los datos independientemente del mes analizado.
Citas
Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of Engineering and Environmental Sciences, 24(6), 419-428.
Ashkar, F., & Aucoin, F. (2012). Choice between competitive pairs of frequency models for use in hydrology: a review and some new results. Hydrological sciences journal, 57(6), 1092-106. https://doi.org/10.1080/02626667.2012.701746
Ashkar, F., & Ba, I. (2017). Selection between the generalized Pareto and kappa distributions in peaks-over-threshold hydrological frequency modelling. Hydrological Sciences Journal, 62(7), 1167-1180. https://doi.org/10.1080/02626667.2017.1302089
Ashkar, F., & Tatsambon, C. N. (2007). Revisiting some estimation methods for the generalized Pareto distribution. Journal of Hydrology, 346(3-4), 136-143.
https://doi.org/10.1016/j.jhydrol.2007.09.007
Ashkar, F., Arsenault, M., & Zoglat, A. (1997). On the discrimination between statistical distributions for hydrological frequency analysis. In The 1997 Annual Conference of the Canadian Society for Civil Engineering. Part 3(of 7), Sherbrooke, Can, 05/27-30/97 (pp. 169-178).
Ashkar, F., Ba, I., & Dieng, B. B. (2019, May). Hydrological Frequency Analysis: Some Results on Discriminating between the Gumbel or Weibull Probability Distributions and Other Competing Models. In World Environmental and Water Resources Congress 2019: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management (pp. 374-387). Reston, VA: American Society of Civil Engineers.
Bermudez, V.A.B.; Abilgos, A.B.B.; Cuaresma, D.C.N. & Rabajante, J.F (2017). Probability Distribution of Philippine Daily Rainfall Data. Preprints, 2017120150. https://doi.org/10.20944/preprints201712.0150.v1
Bjureland, W., Johansson, F., Sjölander, A., Spross, J., & Larsson, S. (2019). Probability distributions of shotcrete parameters for reliability-based analyses of rock tunnel support. Tunnelling and Underground Space Technology, 87, 15-26.
https://doi.org/10.1016/j.tust.2019.02.002
Bolfarine, H., & Sandoval, M. C. (2001). Introdução à inferência estatística (Vol. 2). São Paulo: SBM.
Brito, S., Marengo, J., & Coutinho, M. (2017). Reduction of vulnerability to disasters: from knowledge to action. Climate change and drought in Brazil (pp. 361-376).São Paulo: Editora RIMA.
Chang, T. P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272-282. https://doi.org/10.1016/j.apenergy.2010.06.018
Cheng, K. S., Chiang, J. L., & Hsu, C. W. (2007). Simulation of probability distributions commonly used in hydrological frequency analysis. Hydrological Processes: An International Journal, 21(1), 51-60. https://doi.org/10.1002/hyp.6176
Elsherpieny, E. A., Muhammed, H. Z., & Radwan, N. U. M. M. (2017). On discriminating between gamma and log-logistic distributions in case of progressive type II censoring. Pakistan Journal of Statistics and Operation Research, 157-183. https://doi.org/10.18187/pjsor.v13i1.1524
Haberlandt, U., & Radtke, I. (2014). Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows. Hydrology and Earth System Sciences 18 (2014), Nr. 1, 18(1), 353-365. http://dx.doi.org/10.5194/hess-18-353-2014
Hussain, Z., Mahmood, Z., & Hayat, Y. (2010). Modeling the daily rainfall amounts of north-west Pakistan for agricultural planning. Sarhad J. Agric, 27(2), 313-321.
IBGE (2020). Instituto Brasileiro de Geografia e Estatística. Recuperado de https://www.ibge.gov.br/
Li, Z., Brissette, F., & Chen, J. (2013). Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, 27(25), 3718-3729. https://doi.org/10.1002/hyp.9499
Lundgren, W. J. C., SOUzA, I. D., & NETTO, A. (2015). Uso de distribuições de probabilidades para ajuste aos dados de precipitação mensal do estado de Sergipe. Revista Brasileira de Geografia Física, 8(01), 071-080.
Mazucheli, J., & Emanuelli, I. P. (2019). The Nakagami Distribution Applied in Precipitation Data Analysis. Revista Brasileira de Meteorologia, 34(1), 1-7. https://doi.org/10.1590/0102-77863340011
McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
Netto, A. D. O. A., Souza, I. F. D., & Lundgren, W. J. C. (2010). Comparação entre distribuições de probabilidades da precipitação mensal no estado de Pernambuco. Scientia Plena, 6(6).
Papalexiou, S. M., & Koutsoyiannis, D. (2012). Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 45, 51-57. https://doi.org/10.1016/j.advwatres.2011.11.007
Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, (187), 253-318. https://doi.org/10.1098/rsta.1896.0007
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-pesquisa-Cientifica. pdf.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.
Royston, J. P. (1982). Algorithm AS 181: the W test for normality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(2), 176-180. https://doi.org/10.2307/2347986
Royston, J. P. (1982). An extension of Shapiro and Wilk's W test for normality to large samples. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(2), 115-124. https://doi.org/10.2307/2347973
Royston, P. (1995). Remark AS R94: A remark on algorithm AS 181: The W-test for normality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 44(4), 547-551. https://doi.org/10.2307/2986146
Santana, L. I. T., Silva, A. S. A., Menezes, R. S. C., & Stosic, T. (2020). Recurrence quantification analysis of monthly rainfall time series in Pernambuco, Brazil. Research, Society and Development, 9(9). e637997737. https://doi.org/10.33448/rsd-v9i9.7737
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611. https://doi.org/10.2307/2333709
Sharma, M. A., & Singh, J. B. (2010). Use of probability distribution in rainfall analysis. New York Science Journal, 3(9), 40-49.
Sijbers, J., den Dekker, A. J., Scheunders, P., & Van Dyck, D. (1998). Maximum-likelihood estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging, 17(3), 357-361. https://doi.org/10.1109/42.712125
Silva, A. S. A. da, Menezes, R. S. C., Telesca, L., Stosic, B., & Stosic, T (2020). Fisher Shannon analysis of drought/wetness episodes along a rainfall gradient in Northeast Brazil. International Journal of Climatology, 1-14. https://doi.org/10.1002/joc.6834
Singh, V. P. (1987). On application of the Weibull distribution in hydrology. Water Resources Management, 1(1), 33-43. https://doi.org/10.1007/BF00421796
Stern, R. D., & Coe, R. (1982). The use of rainfall models in agricultural planning. Agricultural Meteorology, 26(1), 35-50. https://doi.org/10.1016/0002-1571(82)90056-5
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
Zhu, B., Chen, J., & Chen, H. (2019). Performance of multiple probability distributions in generating daily precipitation for the simulation of hydrological extremes. Stochastic Environmental Research and Risk Assessment, 33(8-9), 1581-1592. https://doi.org/10.1007/s00477-019-01720-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Patricia de Souza Medeiros Pina Ximenes; Antonio Samuel Alves da Silva; Fahim Ashkar; Tatijana Stosic
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.