State of the art of the development of sustainable concrete for applications in conventional structures
DOI:
https://doi.org/10.33448/rsd-v9i11.10272Keywords:
Cement Matrix Composites; Conventional Structures; Solid Waste; Sustainability; Construction materials.Abstract
It is noticeable the increase in the demand for non-renewable raw materials for applications in the most varied segments of civil construction, which in fact causes more significant damage to the environment, whether through the waste generated during extraction, during use, or after use. In this sense, this work aims to present the state-of-the-art corresponding to the concretes currently developed, emphasizing those of a sustainable scope that corroborate the ecological proposal in the use of residues and/or tailings from different sectors of industrial production, in order to partially settle the slag produced by converting them into raw materials for reuse. The increase in proposals to mitigate environmental impacts with a focus on using these wastes becomes evident. The corresponding study area requires greater expansion of the employment possibilities for improving the technique of incorporating waste into concrete with due observance of the dosage, consumption, packing factor when necessary, density of materials involved, and application aspect of the composite.
References
Andrade, C., Mynrine, V., Silva, D. A., Mayer, S. L. S., Simetti, R., Marchiori, F. (2016). Compósito para a construção civil a partir de resíduos industriais. Matéria (Rio J.), 21(2), 321-329. http://dx.doi.org/10.1590/S1517-707620160002.0031
Betat, E. F., Pereira, F. M., Verney, J. C. K. (2009). Concretos produzidos com resíduos do beneficiamento de ágata: avaliação da resistência à compressão e do consumo de cimento. Matéria (Rio J.), 14 (3), 1047-1060. http://dx.doi.org/10.1590/S1517-70762009000300016
Cabral, A. E. B., Schalch, V., Dal Molin, D. C. C., Ribeiro, J. L. D., Ravindrarajah, R. S. (2009). Desempenho de concretos com agregados reciclados de cerâmica vermelha. Cerâmica, 55 (336), 448-460. http://dx.doi.org/10.1590/S0366-69132009000400016
Castellanos, N. T., García, S. I., Agredo, J. T., Gutiérrez, R. M. (2014). Resistance of blended concrete containing an industrial petrochemical residue to chloride ion penetration and carbonation. Ingeniería e Investigación, 34 (1), 11-16. https://doi.org/10.15446/i ng.investig.v34n1.38730
Chagas, L. S. V. B. (2019). Estudo da incorporação de lodo de esgoto calcinado em argamassas como substituto parcial do cimento Portland. Tese de doutorado, Universidade Federal de Pernambuco, Recife, PE, Brasil.
Cunha Oliveira, J. V., Meira, F. F. D. A., Pessoa, Y. C. C., André, T. C. S. S., Cavalcante, K. L. (2017) Tijolos para pavers com resíduo mineral da extração da scheelita: método prático de substituição do agregado miúdo em formulação ternária. In: 2º CONAPESC, Campina Grande, Paraíba, Brasil. Available in <https://bit.ly/2H83sIC>.
Fontes, C. M. A., Toledo Filho, R. D., Barbosa, M. C. (2016). Sewage sludge ash (SSA) in high performance concrete: characterization and application. Revista IBRACON de Estruturas e Materiais, 9 (6), 989-1006. http://dx.doi.org/10.1590/s1983-41952016000600009
Freitas, G. H. M., Violin, R. Y. T., Silva, J. R. R. (2013) Concreto com adição de resíduos de indústria metal mecânica para fins de fabricação de peças pré-moldadas sem função estrutural. In: 8º EPCC, Maringá, Paraná, Brasil. ISBN 978-85-8084-603-4. Retrieved from <https://goo.gl/fkLFbW>.
Givi, A. N., Rashid, S. A., Aziz, F. N. A., Salleh, M. A. M. (2010). Contribution of Rice Husk Ash to the properties of mortar and concrete: a review. Journal of American Science, 157-165. Retrieved from <https://goo.gl/CknDGA>.
Gorninski, J. P., Tonet, K. G. (2016). Avaliação das propriedades mecânicas e da flamabilidade de concretos poliméricos produzidos com resina PET e retardante de chamas reciclados. Ambiente Construído, 16 (2), 69-88. http://dx.doi.org/10.1590/s1678-86212016000200080
Ioannou, S., Reig, L., Paine, K., Quillin, K. (2014). Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cement and Concrete Research, 56, 75-83. https://doi.org/10.1016/j.cemconres.2013.09.015
Isaia, G. C., Gastaldini, A. L. G., Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites, 25, 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9
Izquierdo, I. S., Ramalho, M. A. (2016). Use of residual powder obtained from organic waste to partially replace cement in concrete. Dyna, 83 (195), 147-155. http://dx.doi.org/10.15446/dyna.v83n195.44725
Jackson, M. D., Mulcahy, S. R., Chen, H.; Li, Y., Li, Q., Cappelletti, P., Wenk, H. D. (2017). Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 102, 1435-1450. http://dx.doi.org/10.2138/am-2017-5993CCBY
Lima, A. J. M., Iwakiri, S. (2014). Utilização de resíduos da madeira de pinus spp. como substituição ao agregado miúdo na produção de blocos de concreto para alvenaria estrutural. Ciência Florestal, 24 (1), 223-235. http://dx.doi.org/10.5902/1980509813339
Lima, S. A., Sales, A., Almeida, F. C. R., Moretti, J. P., Portella, K. F. (2011). Concretos com cinza do bagaço da cana-de-açúcar: avaliação da durabilidade por meio de ensaios de carbonatação e abrasão. Ambiente Construído, 11 (2), 201-212. https://doi.org/10.1590/S1678-86212011000200014
Lizarazo Marriaga, J. M., Claisse, P. (2009). Resistencia a la compresión y reología de cementantes ambientalmente amigables. Ingeniería e Investigación, 29 (2), 5-9. Recuperado de <https://bit.ly/2UQJWnf>.
Medeiros, M. H. F., Souza, D. J., Hoppe Filho, J., Adorno, C. S., Quarcioni, V. A., Pereira, E. (2016). Resíduo de cerâmica vermelha e fíler calcário em compósito de cimento Portland: efeito no ataque por sulfatos e na reação álcali-sílica. Matéria (Rio J.), 21 (2), 282-300. http://dx.doi.org/10.1590/S1517-707620160002.0028
Mehta, P. K. (2004). High performance, high volume fly ash concrete for sustainable development. In: Proceedings of the International Workshop on Sustainable Development and Concrete Technology, University of California, Berkeley, USA. Retrieved from <https://goo.gl/wKx32z>.
Meira, G. R., Ferreira, P. R. R., Jerônimo, V. L., Carneiro, A. M. P. (2014). Comportamento de concreto armado com adição de resíduos de tijolo cerâmico moído frente à corrosão por cloretos. Ambiente Construído, 14 (4), 33-52. http://dx.doi.org/10.1590/S1678-86212014000400004
Moura, W. A., Leite, M. B., Bastos, A. J. O. (2013). Avaliação do uso de resíduo de serragem de pedra Cariri (RSPC) para produção de concretos convencionais. Ambiente Construído, 13 (1), 07-24. http://dx.doi.org/10.1590/S1678-86212013000100002
Naik, T. R. (2007). Sustainability of the cement and concrete industries. IN Y.M. Chun, P. C., T.R. Naik, E. Ganjian (Ed. Proc. Int.) Conf: Sustainable construction materials and technologies. Coventry, Taylor and Francis, London. Retrieved from <https://goo.gl/Y9ty8P>.
Padilha Júnior, M. A., Patriota, A. L. S., Teixeira, E. C., Chagas, L. S. V. B. (2015). Estado da arte do estudo do ataque por sulfatos em concretos – avaliação de ensaios acelerados versus ensaios de campo. In: 72º CONTECC, Fortaleza, Ceará, Brasil. Retrieved from <https://goo.gl/GqgNTo>.
Paiva, E. H. G. (2013). Avaliação do concreto de cimento Portland com resíduo da produção de scheelita em substituição ao agregado miúdo. Dissertação de mestrado, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.
Pietrobelli, E. R. (2010). Estudo de viabilidade do pet reciclado em concreto sob aspecto da resistência à compressão. Trabalho de monografia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brasil.
Portela, J. D., Gandia, R. M., Araújo, B. L. O., Pereira, R. A., Gomes, F. C. (2020). Physical, mechanical and thermal behavior of concrete block stabilized with glass fiber reinforced polymer waste. Research, Society and Development, 9 (11), 1-33. http://dx.doi.org/10.33448/rsd-v9i11.9838
Ranieri, M. G. A.; Martins, M. A. B.; Capellato, P.; Melo, M. L. N. M.; Mello, A. S. (2020). Possibility to use waste tire waste in the composition of mixtures for the manufacture of cement blocks. Research, Society and Development, 9 (9), 1-26. http://dx.doi.org/10.33448/rsd-v9i9.6773
Rodrigues, C. R. De S.; Fucale, S. (2014). Dosagem de concretos produzidos com agregado miúdo reciclado de resíduo da construção civil. Ambiente Construído, 14 (1), 99-111. http://dx.doi.org/10.1590/S1678-86212014000100009
Salles, P. V., Viana, T. M., Gomes, C. L., Braga, F. C. S., Poggiali, F. S. J., Rodrigues, C. S. (2020). Mechanical characterization of concretes produced with construction and demolition waste. Research, Society and Development, 9 (1), 1-17. http://dx.doi.org/10.33448/rsd-v9i1.1597
Santos, D. O. J., Fontes, C. M. A., Lima, P. R. L. (2017). Uso de agregado miúdo reciclado em matrizes cimentícias para compósitos reforçados com fibras de sisal. Matéria (Rio J.), 22 (1), e11801. http://dx.doi.org/10.1590/s1517-707620170001.0133
Santos, M. L. L. O. (2008). Aproveitamento de resíduos minerais na formulação de argamassas para a construção civil. Tese de doutorado, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.
Sathawane, S. H., Vairagade, V. S., Kene, K. S. (2013). Combine effect of Rice Husk Ash and Fly Ash on concrete by 30% cement replacement. Procedia Engineering, 51, 35-44. https://doi.org/10.1016/j.proeng.2013.01.009
Silva, A. F. P., Andrade, D. T. M., Rios, N. A. B., Nascimento, L. G. (2020). Desempenho do concreto com adição de cinza do bambu. Research, Society and Development, 9 (9), 1-29. http://dx.doi.org/10.33448/rsd-v9i9.6755
Silveira, P. M., Albuquerque, M. C. F., Cassola, S., Bortolucci, A. A., Paulli, L., Villa, F. M. D. (2016). Estudo do comportamento mecânico do concreto com borracha de pneu. Matéria (Rio J.), 21 (2), 416-428. http://dx.doi.org/10.1590/S1517-707620160002.0039
Souza, N. S., Felipe, R. C. T. S., Felipe, R. N. B., Lima, N. L. P. (2020). Resíduos sólidos industriais: compósito com resíduos de plástico reforçado com fibra de vidro. Research, Society and Development, 9 (9), 1-23. http://dx.doi.org/10.33448/rsd-v9i9.7136
Steiner, L. R. (2011). Efeito do rejeito de polimento do porcelanato na fabricação de blocos de concreto de cimento Portland. Monografia de especialização, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil.
Tenório, J. J. L., Gomes, P. C. C., Rodrigues, C. C., Alencar, T. F. F. (2012). Concrete produced with recycled aggregates. Revista IBRACON de Estruturas e Materiais, 5 (5), 692-701. http://dx.doi.org/10.1590/S1983-41952012000500006
Wilson, W., Rivera-Torres, J. M., Sorelli, L., Durán-Herrera, A., Tagnit-Hamou, A. (2017). The micromechanical signature of high-volume natural pozzolan concrete by combined statistical nanoindentation and SEM-EDS analyses. Cement and Concrete Research, 91, 1-12. http://dx.doi.org/10.1016/j.cemconres.2016.10.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 João Victor da Cunha Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.