VertCalc: hydraulic software to sharp-crested weir design and flow measurement
DOI:
https://doi.org/10.33448/rsd-v9i11.10444Keywords:
Hydraulics; Hydrometry; Computational resource.Abstract
Sharp-crested weir are simple, inexpensive, and useful hydraulic structures for measuring flow in open channels. Although obtaining the flow rate when the dimensions of the weir are known is easy, the inverse problem is more complex: designing a weir for a maximum expected flow as it is necessary to solve an 3/2 and 5/2 degree equation, which cannot be performed analytically and requires the use of computational resources. This paper aimed to present the VertCalc, which is a free and offline software that has functions of estimating flow and design of weirs with rectangular (with or without contractions), triangular, and trapezoidal geometries, and make it available to the academic community and hydraulic professionals. The program was developed in the Visual Basic language and presented itself as easy to use and with reliable results when compared with the technical literature. The error analysis in estimating the values of the developed program resulted in percentages between 0.0% and 6.6%.
References
Akan, A. O. (2006). Open Channel Hydraulics. Oxford: Elsevier Science & Technology.
Al-Hashimi, S. A. M., Madhloom, H. M., Khalaf, R. M., Nahi, T. N., & Al-Ansari, N. A. (2017). Flow over Broad Crested Weirs: Comparison of 2D and 3D Models. Journal of Civil Engineering and Architecture, 11, 769-79.
Arvanaghi, H., & Oskuei, N. N. (2013). Sharp-Crested Weir Discharge Coefficient. J. Civil Eng. Urban, 3(3), 87-91.
Associação Brasileira de Normas Técnicas NBR 13403. (1995). Medição de vazão em efluentes líquidos e corpos receptores - Escoamento livre. Rio de Janeiro: ABNT.
Ayaz, M., & Mansoor, T. (2018). Discharge coefficient of oblique sharp crested weir for free and submerged flow using trained ANN model. Water Sci., 32(2), 192-212.
Azevedo Netto, J. M., & Fernández y Fernández, M. (2015). Manual de hidráulica. São Paulo: Blucher.
Brunetti, F. (2008). Mecânica dos Fluidos. São Paulo: Pearson Education.
Chanson, H. (2005). Hydraulics of Open Channel Flow. Oxford: Elsevier Science & Technology.
Costa, F. M.; Bacellar, L. A. P., & Silva, E. F. (2007). Vertedores portáteis em microbacias de drenagem. Rev. Esc. Minas, 60(2), 213-8.
Dingman, S. A. (2009). Fluvial Hydraulics. Oxford: Oxford University Press.
Guillermo, O. E. P., Schlatter, G. V., Lima, J. V., Tarouco, L. R., & Reategui, E. (2019). Aprendizagem significativa suportada pelas tecnologias de informação e comunicação: laboratório virtual Hidrolândia. In: Martins, E. N. (Org.). Informática aplicada à educação 2. Ponta Grossa (PR): Atena Editora.
Guillermo, O. E. P., Tarouco, L. M. R., & Endres, L. A. M. (2005). O poder das simulações no ensino de hidráulica. Renote, 3(1), 1-10.
Ionescu, C. S., Nistoran, D. E. G., Opriş, A. I., & Simionescu, Ş. (2019). Sensitivity Analysis of Sharp-Crested Weirs as a Function of Shape Opening, for Small Discharges. Hidraulica, 2019(2), 43-51.
Johnson, M. Discharge coefficient analysis for flat-topped and sharp-crested weirs. (2000). Irrig. Sci., 19, 133-137.
Mahtabi, G., & Arvanaghi, H. (2018). Experimental and numerical analysis of flow over a rectangular full-width sharp-crested weir. Water Sci. Eng., 11(1), 75-80.
Ministério da Saúde. (2008). Vigilância e controle de moluscos de importância epidemiológica: diretrizes técnicas. Brasília: Editora do Ministério da Saúde.
Nguyen, V. T., Moreno, C. S., & Lyu, S. (2015). Numerical simulation of sediment transport and bedmorphology around Gangjeong Weir on Nakdong River. KSCE J Civ Eng, 19(7), 2291-2297.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. Metodologia da pesquisa científica. (2018). Santa Maria: UAB/NTE/UFSM.
Popescu, I. Computational Hydraulics: Numerical Methods and Modelling. (2014). London: IWA Publishing.
Porto, R. M. (2006). Hidráulica básica. São Carlos: EESC/USP.
Rady, R. M. A. E. H. 2D-3D modeling of flow over sharp-crested weirs. (2011). J. Appl. Sci. Res, 7(12), 2495-2505.
Santos, L. L., & Srinivasan, V. S. (2012). Modelagem Hidrossedimentológica no Semi-Árido Paraibano Utilizando o Modelo Wepp e o Efeito de Escala Sobre os seus Parâmetros. Rev. Bras. Recur. Hídricos, 17(1), 53-63.
Suárez-Medina, M. A., & Astudillo-Enríquez, C. (2013). Uso de software para la gestión de proyectos hidráulicos. Tecnol. cienc. agua, 4(3), 195-202.
Zahiri, A., Tang, X., & Azamathulla, H. M. (2014). Mathematical modeling of flow discharge over compound sharp-crested weirs. J Hydro-Environ. Res., 8(3), 194-199.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Thales Augusto Ribeiro; Davi Santiago Aquino
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.