Technologies for traceability, safety and control of pesticide residues in the food production chain of plant origin: a review study
DOI:
https://doi.org/10.33448/rsd-v9i12.10780Keywords:
Food Production; Information Technology; Internet of Things; Hazard Control; Agrochemicals.Abstract
The objective of this article was to carry out an integrative literature review on the aspects involved and the main traceability technologies aimed at the safety and control of pesticide residues in plant foods. The analysis of the articles occurred in a descriptive way, in order to present its most relevant aspects and gather knowledge produced on the topic. To this end, 67 articles published in the last ten years (2010 - 2020) in national and international journals were selected. The study made it possible to observe that the development of traceability technologies, supported especially in the use of the internet and artificial intelligence, presents itself as an important reinforcement in guaranteeing precision and safe flow of information in the food production chain. In addition, consumer demand for more transparency and security in the production chain and the establishment of international regulatory mechanisms for traceability under food commodities have driven the development of these technologies. However, most of the reviewed articles point out that such technologies are still very much associated with logistics processes, to the detriment of aspects related to food security and sanitary control over pesticide residues in plant foods.
References
Andrade, J. C. de, Deliza, R., Yamada, E. A.; Galvão, M. T. E. L., Frewer, L. J., & Beraquet, N. J. (2013). Percepção do consumidor frente aos riscos associados aos alimentos, sua segurança e rastreabilidade. Braz. J. Food Technol., 16 (3), 184-191. https://doi:10.1590/S1981-67232013005000023
Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172-184. https://doi: 10.1016/j.foodcont.2013.11.007
Autoridade Europeia para a Segurança Alimentar. (2014). The 2011 European Union Report on Pesticide Residues in Food, EFSA Journal,12(5), 3694. https://doi:10.2903/j.efsa.2014.3694.
Badia-Melis, R., Mishra, P., & Ruiz-García, L. (2015). Food traceability: New trends and recent advances. A review. Food Control, 57, 393–401. https://doi:10.1016/j.foodcont.2015.05.005
Bevilacqua, M., Bucci, R., Magrì, A. D., Magrì, A. L., & Marini, F. (2012). Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Analytica Chimica Acta, 717, 39–51. https://doi:10.1016/j.aca.2011.12.035
Binneck, E., Nedel, J. L., & Dellagostin, O. A. (2002). Análise de RAPD na identificação de cultivares: uma metodologia útil? Revista Brasileira de Sementes, 24(1), 183-196. https://doi.org/10.1590/S0101-31222002000100027
Bombardi, L. M. Geografia do uso de agrotóxicos no Brasil e conexões com a União Europeia. São Paulo: FFLCH - USP, 2017. 296 p.
Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48. https://doi:10.1016/j.foodcont.2013.02.004
Brofman Epelbaum, F. M., & Garcia Martinez, M. (2014). The technological evolution of food traceability systems and their impact on firm sustainable performance: A RBV approach. International Journal of Production Economics, 150, 215–224. https://doi:10.1016/j.ijpe.2014.01.007
Cao, Y., Liu, X., Guan, C., & Mao, B. (2017). Implementation and Current Status of Food Traceability System in Jiangsu China. Procedia Computer Science, 122, 617–621. https://doi:10.1016/j.procs.2017.11.414
Carneiro, F. F., Rigotto, R. M., Augusto, L. G. S., Friedrich, K., & Búrigo, A. C. (Org.). (2015). Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. Rio de Janeiro: EPSJV, São Paulo: Expressão Popular.
Carson, R. (2010). Primavera Silenciosa (Martins, C. S., Trad.) (1a ed.). São Paulo: Gaia.
Carvalho, L. S. P. de., Nascimento, J. F. de L., & Nascimento-e-Silva, D. (2020). Rastreamento na entrega de produtos utilizando RFID portátil com arduino. Research, Society and Development, 9(10), e7529109298. https://doi.org/10.33448/rsd-v9i10.9298
Centro de Comércio Internacional (CCI). Traceability in food and Agricultural products. Bulletin n.º 91/2015, Geneva: CCI; Recuperado de https://www.intracen.org/uploadedfiles/intracenorg/content/exporters/exporting_better/quality_management.
Chen, H.-M., Chang, K.-C., Lin, & T.-Hsi (2016). A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Automation in Construction, S0926580516300413, 1-15. https://doi:10.1016/j.autcon.2016.03.002
Ciscato, C. H. P., Bertoni Gebara, A., & Henrique Monteiro, S. (2009). Pesticide residue monitoring of Brazilian fruit for export 2006–2007. Food Additives and Contaminants: Part B, 2(2), 140–145. https://doi:10.1080/19440040903330326
Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65–80. https://doi:10.1016/j.biosystemseng.2013.09.006
Ding, J., Huang, J., Jia, X., Bai, J., Boucher, S., & Carter, M. (2015). Direct farm, production base, traceability and food safety in China. Journal of Integrative Agriculture, 14(11), 2380–2390. https://doi:10.1016/s2095-3119(15)61127-3
Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 1–1. https://doi:10.1109/jiot.2018.2844296
Fang, B., & Zhu, X. (2014). High content of five heavy metals in four fruits: Evidence from a case study of Pujiang County, Zhejiang Province, China. Food Control, 39, 62–67. https://doi:10.1016/j.foodcont.2013.10.039
Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabattin, J., & Lagos, C. (2016). Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. Journal of Sensors, 2016, 1–8. https://doi:10.1155/2016/4046061
Galimberti, A., Bruno, A., Mezzasalma, V., De Mattia, F., Bruni, I., & Labra, M. (2015). Emerging DNA-based technologies to characterize food ecosystems. Food Research International, 69, 424–433. https://doi:10.1016/j.foodres.2015.01.017
Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., Martelloss S., & Labra, M. (2013). DNA barcoding as a new tool for food traceability. Food Research International, 50(1), 55–63. https://doi:10.1016/j.foodres.2012.09.036
Gebara, A. B., Ciscato, C. H. P., da S. Ferreira, M., & Monteiro, S. H. (2005). Pesticide Residues in Vegetables and Fruits Monitored in São Paulo City, Brazil, 1994–2001. Bulletin of Environmental Contamination and Toxicology, 75(1), 163–169. https://doi:10.1007/s00128-005-0733-9
Giri, A., Dutta, S., & Neogy, S. (2016). Enabling agricultural automation to optimize utilization of water, fertilizer and insecticides by implementing Internet of Things (IoT). 2016 International Conference on Information Technology (InCITe) - The Next Generation IT Summit on the Theme - Internet of Things: Connect Your Worlds. https://doi:10.1109/incite.2016.7857603
González-Martín, M. I., Wells Moncada, G., González-Pérez, C., Zapata San Martín, N., López-González, F., Lobos Ortega, I., & Hernández-Hierro, J.-M. (2014). Chilean flour and wheat grain: Tracing their origin using near infrared spectroscopy and chemometrics. Food Chemistry, 145, 802–806. https://doi:10.1016/j.foodchem.2013.08.103
Grace, D. (2015). Food Safety in Low and Middle Income Countries. International Journal of Environmental Research and Public Health, 12(9), 10490–10507. https://doi:10.3390/ijerph120910490
Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., & Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16(5), 490–491. https://doi:10.1016/s1470-2045(15)70134-8
Hu, J., Zhang, X., Moga, L. M., & Neculita, M. (2013). Modeling and implementation of the vegetable supply chain traceability system. Food Control, 30(1), 341–353. https://doi:10.1016/j.foodcont.2012.06.037
Jedermann, R., Nicometo, M., Uysal, I., & Lang, W. (2014). Reducing food losses by intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130302. https://doi:10.1098/rsta.2013.0302
Jin, S., Zhang, Y., & Xu, Y. (2017). Amount of information and the willingness of consumers to pay for food traceability in China. Food Control, 77, 163–170. https://doi:10.1016/j.foodcont.2017.02.012
Karlsen, K. M., Dreyer, B., Olsen, P., & Elvevoll, E. O. (2013). Literature review: Does a common theoretical framework to implement food traceability exist? Food Control, 32(2), 409–417. https://doi:10.1016/j.foodcont.2012.12.011
Kumari, L., Narsaiah, K., Grewal, M. K., & Anurag, R. K. (2015). Application of RFID in agri-food sector. Trends in Food Science & Technology, 43(2), 144–161. https://doi:10.1016/j.tifs.2015.02.005
Lam, H.-M., Remais, J., Fung, M.-C., Xu, L., & Sun, S. S.-M. (2013). Food supply and food safety issues in China. The Lancet, 381(9882), 2044–2053. https://doi:10.1016/s0140-6736(13)60776-X
Li, J., Liu, Y., & Gao, H. (2017). Requirement Analysis for the Collaborative Supply and Logistics Management of Fresh Agricultural Products. Web of Conferences, ITA. 2017. https://doi:10.1051/itmconf/201712011026
Li, M., Qian, J.-P., Yang, X.-T., Sun, C.-H., & Ji, Z.-T. (2010). A PDA-based record-keeping and decision-support system for traceability in cucumber production. Computers and Electronics in Agriculture, 70(1), 69–77. https://doi:10.1016/j.compag.2009.09.009
Liao, P.-A., Chang, H.-H., & Chang, C.-Y. (2011). Why is the food traceability system unsuccessful in Taiwan? Empirical evidence from a national survey of fruit and vegetable farmers. Food Policy, 36(5), 686–693. https://doi:10.1016/j.foodpol.2011.06.010
Liu, C., Li, J., Steele, W., & Fang, X. (2018). A study on Chinese consumer preferences for food traceability information using best-worst scaling. PLOS ONE, 13(11), e0206793. https://doi:10.1371/journal.pone.0206793
Liu, H., Kerr, W. A., & Hobbs, J. E. (2012). A review of Chinese food safety strategies implemented after several food safety incidents involving export of Chinese aquatic products. British Food Journal, 114(3), 372–386. https://doi:10.1108/00070701211213474
Liu, K., Dong, H., & Deng, Y. (2016). Recent Advances on Rapid Detection of Pesticides Based on Enzyme Biosensor of Nanomaterials. Journal of Nanoscience and Nanotechnology, 16(7), 6648–6656. https://doi:10.1166/jnn.2016.11392
Liu, S., Zheng, Z., & Li, X. (2012). Advances in pesticide biosensors: current status, challenges, and future perspectives. Analytical and Bioanalytical Chemistry, 405(1), 63–90. https://doi:10.1007/s00216-012-6299-6
Loureiro, A. A. F. Redes de Sensores Sem Fio. Grandes desafios da pesquisa em computação no Brasil 2006 - 2016. Sociedade Brasileira de Computação, 2018. Recuperado de https://www.gta.ufrj.br/rebu/arquivos/SBC-Grandes.pdf
Lu, J., Wu, L., Wang, S., & Xu, L. (2016). Consumer preference and demand for traceable food attributes. British Food Journal, 118(9), 2140–2156. https://doi:10.1108/bfj-12-2015-0461
Magalhães, A. E. V., Rossi, A. H. G., Zattar, I. C., Marques, M. A. M., & Seleme, R. (2019). Food traceability technologies and foodborne outbreak occurrences. British Food Journal, 121(12), 3362-3379. https://doi:10.1108/BFJ-02-2019-0143
Mahmoudpour, M., Torbati, M., Mousavi, M.-M., Guardia, M. de la, & Nazhad Dolatabadi, J. E. (2020). Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry, 115943. https://doi:10.1016/j.trac.2020.115943
Musa, A., & Dabo, A.-A. A. (2016). A Review of RFID in Supply Chain Management: 2000–2015. Global Journal of Flexible Systems Management, 17(2), 189–228. https://doi:10.1007/s40171-016-0136-2
Organização Internacional para Padronização (2007). ISO22005:2007: traceability in feed and food chain: general principles and basic requirements for system design and implementation. Brussels, Belgium. European Standard, Committee for Standardization, EN. ISO 22005:2007.
Organização Mundial da Saúde (2015). Estimativas da OMS da carga global de doenças transmitidas por alimentos: grupo de referência epidemiológica da carga de doenças transmitidas por alimentos 2007-2015. Geneva: OMS. Recuperado de https://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/
Pakurár, M., Kovács, S., Popp, J., & Vántus, A. (2015). Innovative solutions in traceability to improve the competitiveness of a local fruit and vegetable retailing system, Amfiteatru Economic Journal, 17(39), 676-91. Recuperado de http://hdl.handle.net/10419/168941.
Passos, F. R., & Reis, M. R. dos. (2013). Resíduos de agrotóxicos em alimentos de origem vegetal: revisão. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 23. 49-58. https://doi:10.5380/pes.v23i0.35002
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.
Pigłowski, M. (2020). Food hazards on the European Union market: The data analysis of the Rapid Alert System for Food and Feed. Food Sci Nutr. 2020, 1-25. https://doi: 10.1002/fsn3.1448
Ping, H., Wang. J., Ma, Z., & Du, Y. (2018). Mini-review of application of IoT technology in monitoring agricultural products quality and safety. Int J Agric & Biol Eng, 11(5), 35-45. https://doi:10.25165/j.ijabe.20181105.3092
Pirondini, A., Bonas, U., Maestri, E., Visioli, G., Marmiroli, M., & Marmiroli, N. (2010). Yield and amplificability of different DNA extraction procedures for traceability in the dairy food chain. Food Control, 21(5), 663–668. https://doi:10.1016/j.foodcont.2009.10.004
Qiao, S., Wei, Z., Yang, Y. (2013). Research on Vegetable Supply Chain Traceability Model Based on Two-Dimensional Barcode. Sixth International Symposium on Computational Intelligence and Design (ISCID), 317–320. https://doi:10.1109/ISCID.2013.86
Qian, J.-P., Yang, X.-T., Wu, X.-M., Zhao, L., Fan, B.-L., & Xing, B. (2012). A traceability system incorporating 2D barcode and RFID technology for wheat flour mills. Computers and Electronics in Agriculture, 89, 76–85. https://doi:10.1016/j.compag.2012.08.004
Qian, J., Shi, C., Wang, S., Song, Y., Fan, B., & Wu, X. (2018). Cloud-based system for rational use of pesticide to guarantee the source safety of traceable vegetables. Food Control, 87, 192–202. https://doi:10.1016/j.foodcont.2017.12.015
Saltini, R., & Akkerman, R. (2012). Testing improvements in the chocolate traceability system: Impact on product recalls and production efficiency. Food Control, 23(1), 221–226. https://doi:10.1016/j.foodcont.2011.07.015
Sarti, F. M., & Torres, E. A. F. da S. (Org.). (2017). Nutrição e Saúde Pública: produção e consumo de alimentos. Barueri: São Paulo, Manole.
Schreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616–626. https://doi:10.1016/j.foodpol.2012.06.003
Silva da, R. M. Introdução ao geoprocessamento: conceitos, técnicas e aplicações. Novo Hamburgo/RS, Feevale, 2007. p.176.
Singh, D., Karthik, S., Nar, S., & Piplani, D. (2017). Food Traceability and Safety: From Farm to Fork: A Case Study of Pesticide Traceability in Grapes. Journal of Advanced Agricultural Technologies, 4(1), 40-17. https://doi: 10.18178/joaat.4.1.40-47
Souza, M.T. de, Silva, M. da, & Carvalho, R. de (2010). Integrative review: what is it? How to do it? Einstein, 8(1), 102–106. https://doi:10.1590/s1679-45082010rw1134
Spagnol, W. A., Silveira Junior, V., Pereira, E., & Guimarães Filho, N. (2018). Redução de perdas nas cadeias de frutas e hortaliças pela análise da vida útil dinâmica. Brazilian Journal of Food Technology, 21(0), e2016070. https://doi:10.1590/1981-6723.07016
Storøy, J., Thakur, M., & Olsen, P. (2013). The TraceFood Framework – Principles and guidelines for implementing traceability in food value chains. Journal of Food Engineering, 115(1), 41–48. https://doi:10.1016/j.jfoodeng.2012.09.018
Tian, F. (2017). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. 2017 International Conference on Service Systems and Service Management. https://doi:10.1109/icsssm.2017.7996119
Tsakiridou, E., Mattas, K., Tsakiridou, H., & Tsiamparli, E. (2011). Purchasing Fresh Produce on the Basis of Food Safety, Origin, and Traceability Labels. Journal of Food Products Marketing, 17(2-3), 211–226. https://doi:10.1080/10454446.2011.548749
Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi:10.1016/j.biosystemseng.2017.09.007
União Europeia. (2017). Introduction to EC Pesticides Residues Legislation. European Union: Brussels. Recuperado de: <http://www4.ujaen.es/~ajmoya/material_docente/introd.pdf>
União Europeia. (2019). The Rapid Alert System for Food and Feed 2018: annual report. Luxemburgo: European Union. Recuperado de https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2018.pdf
Ursi, E. S., & Gavão, C. M. (2006). Prevenção de lesões de pele no perioperatório: revisão integrativa da literatura. Revista Latino-Americana de Enfermagem, 14(1), 124–131.
Vanany, I., Mardiyanto, R., Ijtihadie, R. M., Andri, K. B., & Engelseth, P. (2016). Developing electronic mango traceability in Indonesia. Supply Chain Forum: An International Journal, 17(1), 26–38. https://doi:10.1080/16258312.2016.1143206
Versari, A., Laurie, V.F., Ricci, A., Laghi, L., & Parpinello, G.P. (2014). Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 60(0), 2-18. https://doi: 10.1016/j.foodres.2014.02.007
Xueyuan, W., & Bo, Y. (2018). Research and Design of Traceability Sistem of Agricultural Products. International Conference on Engineering Simulation and Intelligent Control, https://doi:10.1109/ESAIC.2018.00097
Yan, X., Li, H., & Su, X. (2018). Review of optical sensors for pesticides. TrAC Trends in Analytical Chemistry, 103, 1–20. https://doi:10.1016/j.trac.2018.03.004
Yuan, C., Wang, S., & Yu, X. (2020). The impact of food traceability system on consumer perceived value and purchase intention in China. Industrial Management & Data Systems, 120(4), 810–824. https://doi:10.1108/imds-09-2019-0469
Zhao, F., Wu, J., Ying, Y., She, Y., Wang, J., & Ping, J. (2018). Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends in Analytical Chemistry, 106, 62–83. https://doi:10.1016/j.trac.2018.06.017
Zhao, Y., Zhang, B., Chen, G., Chen, A., Yang, S., & Ye, Z. (2014). Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food Chemistry, 145, 300–305. https://doi:10.1016/j.foodchem.2013.08.062
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Milton Cosme Ribeiro; Alisson Martins Ramos; Vanessa Alves Ferreira; Joice Rodrigues da Cunha; Camila Argenta Fante
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.