Influence of different surface treatment protocols on the bond strength of itrite stabilized polycrystalline zirconia Itry stabilized polycrystalline tetragonal
DOI:
https://doi.org/10.33448/rsd-v9i12.10921Keywords:
Ceramic; Y-TZP Ceramic; Shear Strength; Resin Cements; Hydrofluoric Acid.Abstract
Evaluate the influence of different surface treatment protocols on shear bond strength in zirconia ceramics. A hundred zirconia cylinders were made using a CAD/CAM system. The specimens were divided into 10 groups: No treatment; Clearfil Ceramic Primer; Scotch bond Universal; Clearfil Ceramic Primer + Scotch bond Universal; 50% hydrofluoric acid + Scotch bond Universal; Airborne-particle abrasion; Airborne-particle abrasion + Clearfil Ceramic Primer; Airborne-particle abrasion + Scotch bond Universal; Airborne-particle abrasion + Clearfil Ceramic Primer + Scotch bond Universal; Airborne-particle abrasion+50% hydrofluoric acid + Scotch bond Universal. All specimens were cemented with Panavia F 2.0, stored in distilled water, and then thermo cycled. The shear bond strength test was performed in a universal testing machine. Fractographic and surface zirconia analysis was done with a stereomicroscope, SEM and WDS. Data were analyzed using Pearson’s chi-square test, Fisher exact test, and the Kruskal-Wallis test. The highest shear bond strength values were observed in the groups treated with hydrofluoric acid, besides, these groups did not show pre-test failure. The predominant failure mode was adhesive. Among the surface treatment protocols evaluated, 50% hydrofluoric acid conditioning associated with the Scotchbond Universal adhesive system offers higher values of shear bond strength to the zirconia, regardless of the use of microblasting.
References
Al-Harbi F A, Ayad N M, Khan Z A, Mahrous A A, & Morgano S M (2016). In vitro shear bond strength of YTZ ceramics to different core materials with the use of three primer/resin cement systems. J Prosthet Dent 115(1):84-89. https://doi.org/10.1016/j.prosdent.2015.07.002
Behr M, Proff P, Kolbeck C, Langrieger S, Kunze J, & Handel G, et al (2011). The bond strength of the resin-to-zirconia interface using different bonding concepts. J Mech Behav Biomed Mater 4(1):2-8. https://doi.org/10.1016/j.jmbbm.2010.08.002
Bielen V, Inokoshi M, De Munck J, Zhang F, Vanmeensel K, & Minakuchi, S, et al (2015). Bonding effectiveness to differently sandblasted dental zirconia. J Adhes Dent 17(3):235-242. https://doi.org/10.3290/j.jad.a34401
Cristoforides P, Amaral R, May LG, Bottino M A, & Valandro L F (2012). Composite resin to yttria-stabilized tetragonal zirconia polycrystal bonding: comparison of repair methods. Oper Dent 37(3):263-271. https://doi.org/10.2341/11-193-L
Della Bona A, Anusavice K J, & Shen C (2000). Microtensile strength of composite bonded to hot-pressed ceramic. J Adhes Dent 2(4):305-313
Dogan S, Raigrodski A J, Zhang H, & Mancl L A (2017). Perspective cohort clinical study assessing the 5-year survival and success of anterior maxillary zirconia-based crowns with customized zirconia copings. J Prosthet Dent 117(2):226-232. https://doi.org/10.1016/j.prosdent.2016.07.019
Hallmann L, Ulmer P, Lehmann F, Wille S, Polonskyi O, & Johannes M, et al (2016). Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent Mater 32(5):631-639. https://doi.org/10.1016/j.dental.2016.02.001
Kern, M (2015). Bonding to oxide ceramics— Laboratory testing versus clinical outcome. Dent Mater 31(1):8–14. https://doi.org/10.1016/j.dental.2014.06.007
Koizumi H, Nakayama D, Komine F, Blatz M B, & Matsumura H (2012). Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents. J Adhes Dent 14(4):385-392. https://doi.org/10.3290/j.jad.a22711
Liu D, Tsoi J K, Martinlinna J P, & Wong H M (2015). Effects of some chemical surface modifications on resin zirconia adhesion. J Mech Behav Biomed Mater 46:23-30. https://doi.org/10.1016/j.jmbbm.2015.02.015
Llerena-Icochea A E, Costa R M, Borges A, Bombonatti J, & Furuse A Y (2017). Bonding polycrystalline zirconia with 10-MDP containing adhesives. Oper Dent 42(3):335-341. https://doi.org/10.2341/16-156-L
Lung C Y, Botelho M G, Heinonen M, & Matinlinna J P (2012). Resin zirconia bonding promotion with some novel coupling agents. Dent Mater 28(8):863-872. https://doi.org/10.1016/j.dental.2012.04.023
Matinlinna J P, & Lassila L V (2011). Enhanced resin-composite bonding to zirconia framework after pretreatment with selected silane monomers. Dent Mater 27(3):273-280. https://doi.org/10.1016/j.dental.2010.11.002
Menani L R, Farhat I A, Tiossi R, Ribeiro R F, & Guastaldi A C (2014). Effect of surface treatment on the bond strength between yttria partially stabilized zirconia ceramics and resin cement. J Prosthet Dent 112(2):357-364. https://doi.org/10.1016/j.prosdent.2013.08.025
Moradabadi A, Roudsari S E, Yekta B E, & Rahbar N (2014). Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic. Mater Sci Eng C Mater Biol Appl 34:311-317. https://doi.org/10.1016/j.msec.2013.09.015
Pilo R, Kaitsas V, Zinelis S, & Eliades G (2016). Interaction of zirconia primers with yttria-stabilized zirconia surfaces. Dent Mater 32(3):353-362. https://doi.org/10.1016/j.dental.2015.11.031
Samimi P, Hasankhanib A, Matinlinna J P, & Mirmohammadid H (2015). Effect of adhesive resin type for bonding to zirconia using two surface pretreatments. J Adhes Dent 17(4):353-359. https://doi.org/10.3290/j.jad.a34593
Seabra B, Arantes-Oliveira S, & Portugal J (2014). Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J Prosthet Dent 112(2):182-187. https://doi.org/10.1016/j.prosdent.2013.10.008
Tanis M, Akay C, & Karakis D (2015). Resin cementation of zirconia ceramics with different bonding agents. Biotechnol Biotechnol Equip 29(2):363-367. https://doi.org/10.1080/13102818.2014.996606
Tzanakakis E G, Tzoutzas I G, & Koidis P T (2016). Is there a potential for durable adhesion to zirconia restorations? A systematic review. J Prosthet Dent 115(1):9-19. https://doi.org/10.1016/j.prosdent.2015.09.008
Xie H, Li Q, Zhang F, Lu Y Tay F R, Qian M, & Chen C (2016). Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dent Mater 32(3):403-411. https://doi.org/10.1016/j.dental.2015.12.014
Zaher A M, Hochstedler J L, Rueggeberg F A, & Kee E L (2017). Shear bond strength of zirconia-based ceramics veneered with 2 different techniques. J Prosthet Dent 118(2):221-227. https://doi.org/10.1016/j.prosdent.2016.11.016
Zhao L, Jian T, Wang X D, & Zhao K (2016). Bond strength of primer/cement systems to zirconia subjected to artificial aging. J Prosthet Dent 116(5):790-796. https://doi.org/10.1016/j.prosdent.2016.03.020
Zinelis S, Thomas A, Syres K, Silikas N, & Eliades G (2010). Surface characterization of zirconia dental implants. Dent Mater 26(4):295-305. https://doi.org/10.1016/j.dental.2009.11.079
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Leonardo José Rodrigues de Oliveira; Monica Soares de Albuquerque; Armiliana Soares Nascimento; Cacio Mendes; Paulo de Assis; Luan Bernardo; Rodivan Braz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.