Temporal analysis of dengue associated with climatic factors in Garanhuns, Pernambuco, Brazil, from 2010 to 2019

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.11138

Keywords:

Incidence; Dengue; Seasonality; Epidemic; Prevention.

Abstract

In the last five years, the number of Dengue cases has been growing sharply in the city of Garanhuns. The objective of this study was to determine an analysis of the time series of Dengue cases in the medium-sized municipality, associated with climatic factors that contribute to the occurrence of this disease with forecasts, thus facilitating better control and prevention. Methodology: The autoregressive model of seasonal moving averages with exogenous variables (SARIMAX) was applied, which is a linear regression model that involves a process of the SARIMA model. In addition to the graphical analysis of the decomposition of time series, the Dickey-Fuller test was used to assess the stationarity of the series. Considering the seasonal behavior and the non-stationarity of the time series, the adjusted model had as parameters the SARIMA model (p, d, q) (P, D, Q), applying the Akaike Information Criterion (AIC) to select the best model, using the software R. Result: Considering the seasonal component and the non-stationarity of the time series, the model with the best adjustment was SARIMA (0,1,3) (0.1.1), a significance level of 5% (p-value = 0, 01). The SARIMAX model (0, 1, 3) (0,1,1) plus the effect of temperature and humidity were adequate to report the incidence of Dengue. In the correlation, the increase in the temperature component was greater than the humidity in the number of Dengue cases.

References

Banu, S., & Islam, M. A. (2008). Forecasting dengue incidence in Dhaka , Bangladesh : A time series analysis. Dengue Bulletin, 32, 29–37.

Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Myers, M. F., George, D. B., Jaenisch, T., & William, G. R. (2013). The global distribution and burden of dengue. NATURE, 496(7446), 504–507. https://doi.org/10.1038/nature12060.

Cao, Z., Liu, T., Li, X., Wang, J., Lin, H., & Chen, L. (2017). Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale : A Geographical Detector-Based Analysis. Int J Environ Res Public Health, 14(795), 14. https://doi.org/10.3390/ijerph14070795.

Earnest, A., Tan, S. B., Wilder-Smith, A., & MacHin, D. (2012). Comparing statistical models to predict dengue fever notifications. Computational and Mathematical Methods in Medicine, 2012(April 2015). https://doi.org/10.1155/2012/758674.

Fava, V. L. (2000). Manual de econometria. In: Vasconcelos, M. A. S.; Alves, D. São Paulo: Editora Atlas, São Paulo, 2000.

Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., Ruche, G. La, Girdary, L., & Marrama, L. (2011). Time series analysis of dengue incidence in Guadeloupe , French West Indies : Forecasting models using climate variables as predictors. BMC Infectious Diseases, 11(1), 166. https://doi.org/10.1186/1471-2334-11-166.

Guerra, Z. (1999). Epidemiologia e Medidas de Prevenção do Dengue Epidemiology and Preventive Measures of Dengue. Informe Epidemiológico do SUS, 8(4), 5–33.

Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Nathan, M. B., Pelegrino, J. L., Simmons, C., & Yoksan, S. (2015). Dengue : a continuing global threat Europe PMC Funders Author Manuscripts. Nat Rev Microbiol, 8(12 0), 1–26. https://doi.org/10.1038/nrmicro2460.

Huber, J. H., Childs, M. L., Caldwell, J. M., & Mordecai, E. A. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLOS NEG TROP DIS, 12(5), 1–20.

Lai, Y. H. (2018). The climatic factors affecting dengue fever outbreaks in southern Taiwan : an application of symbolic data analysis. BioMedical Engineering OnLine, 17(s2), 1–14. https://doi.org/10.1186/s12938-018-0575-4.

Luz, P. M., Mendes, B. V. M., Codeço, C. T., Struchiner, C. J., & Galvani, A. P. (2008). Time Series Analysis of Dengue Incidence in Rio de Janeiro , Brazil. Am J Trop Med Hyg, 79(6), 933–939.

Mala, S., & Jat, M. K. (2019). Science of the Total Environment Implications of meteorological and physiographical parameters on dengue fever occurrences in Delhi. Science of the Total Environment, 650, 2267–2283. https://doi.org/10.1016/j.scitotenv.2018.09.357.

Minh, Dao Thi; Rocklöv, J. (2014). Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. Global Health Action, 9716(7), 16. https://doi.org/10.3402/gha.v7.23074.

Morettin, P.A. & Toloi, C.M. (2006). Análise de Séries Temporais. São Paulo: Blucher.

Ooi, Eng-Eong. & Gublet D, J. (2008). Dengue in Southeast Asia : epidemiological characteristics and strategic challenges in disease prevention Dengue no Sudeste Asiático : características epidemiológicas e desafi os estratégicos na prevenção da doença. Cad Saúde Publica, 25(1), 115–124.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 16 de dezembro de 2020.

Promprou, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2006). Dengue Haemorrhagic Fever Cases in Sourthern Thailand using ARIMA Models. Dengue Bulletin, 30, 99-106.

Singhi, S., Kissoon, N., & Bansal, A. (2007). Dengue and dengue hemorrhagic fever : management issues in an intensive care unit. J Pediatr, 83, 22–35. https://doi.org/10.2223/JPED.1622.

Stanaway, J. D., Shepard, D. S., Undurraga, E. A., Halasa, A., Coffeng, L. E., Brady, O. J., Hay, S. I., Bedi, N., Bensenor, I. M., & Castañeda-orjuela, C. A. (2016). Global Burden of Dengue : an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis, 16(6), 712–723. https://doi.org/10.1016/S1473-3099(16)00026-8.

Tuladhar, R., Singh, A., Varma, A., & Choudhary, D. K. (2019). Climatic factors influencing dengue incidence in an epidemic area of Nepal. BMC Research Notes, 1–7. https://doi.org/10.1186/s13104-019-4185-4.

Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2011).Climate Variability and Dengue Virus Transmission in Chiang Rai, Thailand. Biomedica. 27, 5-13.

Wongkoon, S., Pollar, M., Jaroensutasinee, M., & Jaroensutasinee, K. (2006). Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique. Intenational Journal of Biological and Medical.

Published

20/12/2020

How to Cite

MORAIS, P. L. L. de; CASTANHA, P. M. S.; NASCIMENTO, G. I. L. A.; MONTARROYOS, U. R. Temporal analysis of dengue associated with climatic factors in Garanhuns, Pernambuco, Brazil, from 2010 to 2019. Research, Society and Development, [S. l.], v. 9, n. 12, p. e22891211138, 2020. DOI: 10.33448/rsd-v9i12.11138. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11138. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences