Basal metabolic rate for adolescents with overweight or obesity
DOI:
https://doi.org/10.33448/rsd-v10i1.11964Keywords:
Indirect calorimetry; Basal metabolism; Metabolic Rest Rate; Electrical Bioimpedance; Obesity.Abstract
The basal metabolic rate (BMR) represents the main component of energy expenditure (SG) in humans and, therefore, has great relevance in obesity treatment programs. Despite this, there are few studies that present data related to BMR of overweight or obese adolescents. Therefore, the objective of the present study is to present information about BMR of adolescents aged between 10 and 18 years old, of both sexes, with a BMI between 25.3 and 52.5 kg / m2. 91 adolescents were evaluated using the indirect calorimetry (CI) method, 37 boys and 54 girls. The prevalence of overweight was 23.0%, obesity 36.3% and severe obesity (40.6%). The median BMR was 2,150.9 and 1,548.4 for boys and girls, respectively (p <0.05). Despite this, there was no significant difference in BMR per unit of mass (TMB / Kg) or per unit of lean mass (TMB / MM). In addition, a significant correlation (p <0.000) was found between BMR measured by CI and that estimated by multifrequency electrical bioimpedance.
References
Andy Field. (2009). Discovering Statistics using SPSS Statistics. SAGE Publications, 66, 822. http://www.amazon.com/Discovering-Statistics-using-IBM-SPSS/dp/1446249182
Barak, N., Wall-Alonso, E., Cheng, A., & Sitrin, M. D. (2003). Use of bioelectrical impedance analysis to predict energy expenditure of hospitalized patients receiving nutrition support. Journal of Parenteral and Enteral Nutrition, 27(1), 43–46. https://doi.org/10.1177/014860710302700143
Brunetto, B. C., Guedes, D. P., & Brunetto, A. F. (2010). Taxa metabólica basal em universitários: comparação entre valores medidos e preditos. Revista de Nutricao, 23(3), 369–377. https://doi.org/10.1590/S1415-52732010000300005
Clark, H. D., & Hoffer, L. J. (1991). Reappraisal of the resting metabolic rate of normal young men. American Journal of Clinical Nutrition, 53(1), 21–26. https://doi.org/10.1093/ajcn/53.1.21
Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj, 320(table 1), 1–6. https://doi.org/10.1136/bmj.320.7244.1240
Cruz, C. M., Da Silva, A. F., & Dos Anjos, L. A. (1999). A taxa metabólica basal é superestimada pelas equações preditivas em universitárias do Rio de Janeiro, Brasil. Archivos Latinoamericanos de Nutricion, 49(3), 232–237.
Heyward, V. (2001). ASEP methods recommendation: Body composition assessment. Journal of Exercise Physiology Online, 4(4), 1–12.
Johnstone, A. M., Murison, S. D., Duncan, J. S., Rance, K. A., & Speakman, J. R. (2005). Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. American Journal of Clinical Nutrition, 82(5), 941–948. https://doi.org/10.1093/ajcn/82.5.941
Lazzer, S., Bedogni, G., Lafortuna, C. L., Marazzi, N., Busti, C., Galli, R., De Col, A., Agosti, F., & Sartorio, A. (2010). Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity, 18(1), 71–78. https://doi.org/10.1038/oby.2009.162
Luy, S. C. R., & Dampil, O. A. (2018). Comparison of the harris-benedict equation, bioelectrical impedance analysis, and indirect calorimetry for measurement of basal metabolic rate among adult obese filipino patients with prediabetes or type 2 diabetes mellitus. Journal of the ASEAN Federation of Endocrine Societies, 33(2), 152–159. https://doi.org/10.15605/jafes.033.02.07
Mascarenhas, L. P. G., Salgueirosa, F. de M., Nunes, G. F., Martins, P. Â., Stabelini Neto, A., & Campos, W. de. (2005). Relação entre diferentes índices de atividade física e preditores de adiposidade em adolescentes de ambos os sexos. Revista Brasileira de Medicina do Esporte, 11(4), 214–218. https://doi.org/10.1590/s1517-86922005000400002
McDuffie, J. R., Adler-Wailes, D. C., Elberg, J., Steinberg, E. N., Fallon, E. M., Tershakovec, A. M., Arslanian, S. A., Delany, J. P., Bray, G. A., & Yanovski, J. A. (2004). Prediction equations for resting energy expenditure in overweight and normal-weight black and white children. American Journal of Clinical Nutrition, 80(2), 365–373. https://doi.org/10.1093/ajcn/80.2.365
Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., Abraham, J. P., Abu-Rmeileh, N. M. E., Achoki, T., Albuhairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., … Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945), 766–781. https://doi.org/10.1016/S0140-6736(14)60460-8
Olejníčková, J., Forejt, M., Čermáková, E., & Hudcová, L. (2019). Factors influencing basal metabolism of czechs of working age from South Moravia. Central European Journal of Public Health, 27(2), 135–140. https://doi.org/10.21101/cejph.a5103
Quenouille, M., Boyne, A., Fisher, W., & Leitch, I. (1951). Statistical Studies of Recorded Energy Expenditure of Man. Basal Metabolism Related to Sex, Stature, Age, Climate, and Race. Commonwealth Bureau of Animal Nutrition. Technical Communication No. 17. Aberdeen: Commonwealth Agricultural Bureau, 17.
Reichman, C. A., Shepherd, R. W., Trocki, O., Cleghorn, G. J., & Davies, P. S. W. (2002). Comparison of measured sleeping metabolic rate and predicted basal metabolic rate during the first year of life: Evidence of a bias changing with increasing metabolic rate. European Journal of Clinical Nutrition, 56(7), 650–655. https://doi.org/10.1038/sj.ejcn.1601372
Schneider, P., & Meyer, F. (2005). As equações de predição da taxa metabólica basal são apropriadas para adolescentes com sobrepeso e obesidade? Revista Brasileira de Medicina do Esporte, 11(3), 193–196. https://doi.org/10.1590/s1517-86922005000300008
Sun, M., Gower, B. A., Bartolucci, A. A., Hunter, G. R., Figueroa-Colon, R., & Goran, M. I. (2001). A longitudinal study of resting energy expenditure relative to body composition during puberty in African American and white children. American Journal of Clinical Nutrition, 73(2), 308–315. https://doi.org/10.1093/ajcn/73.2.308
van Mil, E. G., Westerterp, K. R., Kester, A. D., & Saris, W. H. (2001). Energy metabolism in relation to body composition and gender in adolescents. Archives of disease in childhood, 85(1), 73–78. https://doi.org/10.1136/adc.85.1.73
Wahrlich, V., Anjos, L. A., Going, S. B., & Lohman, T. G. (2007). Basal metabolic rate of Brazilians living in the Southwestern United States. European Journal of Clinical Nutrition, 61(2), 290–294. https://doi.org/10.1038/sj.ejcn.1602498
Wahrlich, Vivian, & Anjos, L. A. dos. (2001). Aspectos históricos e metodológicos da medição e estimativa da taxa metabólica basal: uma revisão da literatura. Cadernos de Saúde Pública, 17(4), 801–817. https://doi.org/10.1590/s0102-311x2001000400015
Wong, W. W., Butte, N. F., Hergenroeder, A. C., Hill, R. B., Stuff, J. E., & Smith, E. O. B. (1996). Are basal metabolic rate prediction equations appropriate for female children and adolescents? Journal of Applied Physiology, 81(6), 2407–2414. https://doi.org/10.1152/jappl.1996.81.6.2407
Zanella, P. B., Ávila, C. C., & de Souza, C. G. (2018). Estimating Resting Energy Expenditure by Different Methods as Compared With Indirect Calorimetry for Patients With Pulmonary Hypertension. Nutrition in Clinical Practice, 33(2), 217–223. https://doi.org/10.1177/0884533617727731
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Greice Westphal; Geison Schmidt Soares; Bruno de Souza Vespasiano; Heloá Costa Borim Christinelli; Igor Alisson Spagnol Pereira; Mario Moreira Castilho; Fernando Malentaqui Martins; Nelson Nardo Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.