Changes induced by diet with different concentrations of resistant starch in the metabolism of carbohydrates and lipids in Wistar rats

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16448

Keywords:

Pregelatinized starch; Experimental diets; Triglycerides; Glycogen; Cholesterol.

Abstract

This study aimed to evaluate the effect of replacing pregelatinized starch with resistant starch on the metabolism of lipids and carbohydrates in male Wistar rats. 20 male rats were divided into two groups, which received a diet with 9.5% (DAP) and 18.1% (DAR) of resistant starch for 22 days. Weight, feed, and water consumption were analyzed and the concentrations of cholesterol and triglycerides in serum and muscle and hepatic and muscle glycogen were quantified. The data were analyzed by Tukey's test (p>0.05) and box-plot graphs. There were no significant differences in feed and water intake, but the animals in the DAP group showed an increase in weight (51.12g to 55.27g) while those in the DAR group decreased (49.01g to 44.15g). The DAR group showed a decrease in triglycerides, total serum cholesterol (from 125.761 mg/dL to 104.874 mg/dL), and muscle glycogen, but an increase in triglycerides in the gastrocnemius muscle compared to the DAP group (from 0.160 mg/dL to 0.259 mg/dL). These results point to a decrease in the glucose absorption speed in the group of animals with a diet with a higher amount of resistant starch, which may have induced a decrease in the processes of synthesis of triglycerides and cholesterol leading to an increase in catabolism of these substrates by the body, plastic adaptation of muscles for the use of fatty acids in their oxidative metabolism.

References

AACC - American Association of Cereal Chemists (2000). Approved methods of the American Association of Cereal Chemists. Saint Paul, USA.

Birt, D. F., Boylston, T., Hendrich, S., Jane, J. L., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G. J., Rowling, M., Schalinske, K., Scott, M. P. & Whitley, E. M. (2013). Resistant starch: Promise for improving human health. Advances in Nutrition, 4, 587-601. https://doi.org/10.3945/an.113.004325.

Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.

Bloch, K. (1965). The biological synthesis of cholesterol. Science, 150, 19-28.

Carvalho, D. V., Silva, L. M. A., Alves Filho, E. G., Santos, F. A., De Lima, R. P., Viana, A. F. S. C, Nunes, P. I. G., Fonseca, S.G.D.C., De Melo, T. S., Viana, D. D. A., Gallão, M. I. & De Brito, E. S. (2019). Cashew apple fiber prevents high fat diet-induced obesity in mice: an NMR metabolomic evaluation. Food & Function, 10, 1671 – 1683. https://doi.org/10,1039 / c8fo01575a.

Costill, D. L. & Wilmore, J. H. (2001) Fisiologia do esporte e do exercício. 1 ed. São Paulo, Brasil: Manole.

Englyst, H., Wiggins, H. S. & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 107, 307-318.

Fonseca, F. A. H. (2005). Farmacocinética das estatinas. Arquivos Brasileiros de Cardiologia, 85. https://doi.org/10.1590/S0066-782X2005002400003.

Fontes, R. (2011). Metabolismo do glicogênio. Universidade do Porto. Faculdade de Medicina do Porto, Porto: Portugal.

Fuentes-Zaragoza, E., Sánchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., Fernández-López, J. & Pérez-Alvarez, J.A. (2011), Resistant starch as prebiotic: A review. Starch/Stärke, 63, 406-415. https://doi.org/10.1002/star.201000099.

Gentile, C. L., Ward, E., Holst, J. J., Astrup, A., Ormsbee, M. J., Connelly, S. & Arciero, P. J. (2015). Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutrition Journal, 14, 1-10. http://purl.flvc.org/fsu/fd/FSU_pmch_26514213.

Goñi, I., Garcia-Diz, L., Mañas, E. & Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foods and food products. Food chemistry, 56, 445-449.

Harris, K. F. (2019). An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutrition Reviews, 77, 748-764. https://doi.or/10.1093/nutrit/nuz040.

Higgins, J. A., Higbee, D. R., Donahoo, W. T., Brown, I. L., Bell, M. L. & Bessesen, D. H. (2004). Resistant starch consumption promotes lipid oxidation. Nutrition & Metabolism, 6, 1-8.

Huijing, P. A. & Jaspers, R. T. (2005). Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scandinavian Journal of Medicine & Science in Sports, 15, 349-80. https://doi.org/10.1111/j.1600-0838.2005.00457.x.

Jenkins, D. J. A., Wolever, T. M. S. & Jenkins, A. L. (1988) Starchy foods and glycemic index. Diabetes care, 11, 149-59.

Jiang, G. & Liu, Q. (2002). Characterization of residues from partially hydrolyzed potato and high amylose corn starches by pancreatic α-amylase. Starch Stärke, 54, 527-533. https://doi.org/10.1002/1521-379X(200211)54:11<527::AID-STAR527>3.0.CO;2-.

Keenan, M. J., Zhou, J., Hegsted, M., Pelkman, C., Durham, H. A., Coulon, D. B. & Martim, R. J. (2015). Role of resistant starch in improving gut health, adiposity, and insulin resistance. Advances in Nutrition, 6, 198-205. https://doi.org/10.3945/an.114.007419

Lehninger, A. L., Nelson, D. L. & Cox, M. M. (2005). Lehninger principles of biochemistry. 4 ed. New York, USA: W. H. Freeman and Company.

Lo, S., Russell, J. C. & Taylor, A. W. (1970) Determination of glycogen in small tissue samples. Journal of Applied Physiology, 28, 234-6.

Maæhlum, S., Hoøstmark, A. T. & Hermansen, L. (1977). Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scandinavian Journal of Clinical & Laboratory Investigation. 37, 309-16. https://doi.org/10.3109/00365517709092634.

Maki, K. C., Pelkman, C. L., Finocchiaro, E. T., Kelley, K. M., Lawless, A. L., Schild, A. L. & Rains, T. M. (2012). Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men. Jounal Nutrition, 142, 717 – 723. https://doi.org/ 10.3945/jn.111.152975.

McGill, R., Tukey, J. W. & Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32, 12-16.

Medina Martinez, O. D., Vieira Theodoro, J. M., Grancieri, M., Lopes Toledo, R. C., Vieira Queiroz, V. A., Ribeiro de Barros, F. A., & Duarte Martino, H. S. (2021). Dry heated whole sorghum flour (BRS 305) with high tannin and resistant starch improves glucose metabolism, modulates adiposity, and reduces liver steatosis and lipogenesis in Wistar rats fed with a high-fat high-fructose diet. Journal of Cereal Science, 99. https://doi.org/10.1016/j.jcs.2021.103201.

Monteiro, F. V. & Nascimento, K. O. (2013). Associação do consumo do amido resistente na prevenção e tratamento do diabetes mellitus tipo 2. Revista Verde, 8, 12 – 19.

Murray, R. K., Granner, D. K., Mayes, P. A. & Rodwell, V. W. (1998). Harper: Bioquímica. Um Livro Médico Lange. 8 ed. São Paulo, Brasil: Atheneu.

Öztürk, S., & Mutlu, S. (2018). Physicochemical properties, modifications, and applications of resistant starches. In Starches for Food Application: Chemical, Technological and Health Properties (pp. 297–332). Elsevier. https://doi.org/10.1016/B978-0-12-809440-2.00008-3.

Pereira, K. D. (2007). Amido resistente, a última geração no controle de energia e digestão saudável. Ciência e Tecnologia em Alimentos, 27, 88-92. https://www.redalyc.org/articulo.oa?id=395940085016.

Petersen, M. C. & Shulman, G. I. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98, 2033–2223. https://dx.doi.org/10.1152%2Fphysrev.00063.2017.

Prado-Silva, L., Azevedo, L., Oliveira, J. A. C., Moreira, A. P. M., Schmiele, M., Chang, Y. K., Paula, F. B. A., & Clerici, M. T. P. S. (2014). Sesame and resistant starch reduce the colon carcinogenesis and oxidative stress in 1,2-dimethylhydrazine-induced cancer in Wistar rats. Food Research International, 62, 609–617. https://doi.org/10.1016/j.foodres.2014.04.027.

Rech, C., Freygang, J., & Azevedo, L. C. de. (2014). Efeito da farinha de banana verde sobre o perfil lipídico e glicídico de ratos Wistar. Alimentos e Nutrição, 25, 7–11.

Reeves, P. G., Nielsen, F. H. & Fahey, Jr. G. C. (1993). Committee Report AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent. The Journal of Nutrition, 123, 1939-1951. https://doi.org/10.1093/jn/123.11.1939.

Shen, L., Keenan, M. J., Raggio, A., Williams, C. & Martin, R. J. (2011). Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat. Molecular Nutrition & Food Research, 55, 1499 – 1508. https://doi.or/10.1002/mnfr.201000605.

Si, X., Strappe, P., Blanchard, C., & Zhou, Z. (2017). Enhanced anti-obesity effects of complex of resistant starch and chitosan in high fat diet fed rats. Carbohydrate Polymers, 157, 834–841. https://doi.org/10.1016/j.carbpol.2016.10.042.

Sun, H., Ma, X., Zhang, S., Zhao, D., & Liu, X. (2018). Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats. International Journal of Biological Macromolecules, 110, 276–284. https://doi.org/10.1016/j.ijbiomac.2017.11.162.

Topping, D. L. & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological reviews, 81, 1031-1064.

Walter, M., Silva, L. P. & Perdomo, D. M. X. (2005). Biological response of rats to resistant starch. Revista Instituto Adolfo Lutz, 64, 252-257.

Zheng, B., Wang, T., Wang, H., Chen, L., & Zhou, Z. (2020). Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet. Carbohydrate Polymers, 246, 116637. https://doi.org/10.1016/j.carbpol.2020.116637.

Published

18/06/2021

How to Cite

ALVES, A. A. .; PIGOSO, A. A. .; CHANG, Y. K. .; TAGLIAPIETRA, B. L.; SCHMIELE, M. .; CAMPELO, P. H. .; CLERICI, M. T. P. S. . Changes induced by diet with different concentrations of resistant starch in the metabolism of carbohydrates and lipids in Wistar rats. Research, Society and Development, [S. l.], v. 10, n. 7, p. e18110716448, 2021. DOI: 10.33448/rsd-v10i7.16448. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16448. Acesso em: 23 nov. 2024.

Issue

Section

Health Sciences