The impact of the SARS-CoV-2 pandemic on cardiovascular diseases

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16590

Keywords:

Health; Myocardium; New coronavirus.

Abstract

According to research carried out in China, the place of origin of the pandemic, cardiac injuries have become characteristic of this new virus, reaching about 30% of patients and leading to 40% of deaths. Several changes were observed such as: myocardial injury (20% of cases), arrhythmias (16%), myocarditis (10%), in addition to heart failure (HF) and shock (up to 5% of cases). The objective of this work is to inform and describe the increase in cardiovascular diseases caused by the new virus. And show the importance of more studies on the area. Data were collected using the scientific bases: Latin American and Caribbean Literature in Health Sciences (LILACS), National Library of medicine (PUBMED), PERIODICOS, SCIENCE DIRECT, Virtual Health Library - (BVS), Scientific Eletronic Library Online (SCIELO), Cochrane Library, HighWire Press, Scopus and Elsevier. Approximately 600 articles were found, languages were checked, and if it was really about the correlation of cardiovascular problems and the new virus, then 39 articles were obtained for the discussion. This work concludes that, according to research, there is a great correlation between the virus and cardiovascular diseases and myocardial injuries, due to the increase in troponin, leading patients to major complications. This is also due to the increase in markers leading to cardiovascular injuries.

References

Aha. Statement From The American Heart Association, the Heart Failure Society of America and the American College of Cardiology. (2020). Patients taking ACE-i and ARBs who contract COVID-19 should continue treatment, unless otherwise advised by their physician.

Akhmerov, A., & Marbán, E. (2020). COVID-19 and the Heart. Circulation research, 126(10), 1443–1455. https://doi.org/10.1161/CIRCRESAHA.120.317055

Brasil. Organização Pan-Americana da Saúde (OPAS). (2004). Avaliação do Plano de Reorganização da Atenção à Hipertensão Arterial e ao Diabetes Mellitus no Brasil. Brasília: Ministério da Saúde (MS).

Borba, M., Val, F., Sampaio, V. S., Alexandre, M., et al. CloroCovid-19 Team (2020). Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA network open, 3(4), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857

Buss, P. M. (2002). Promoção da Saúde da Família. Rev Bras. Saúde Família; 2(6):50-63.

Collins, R., Peto, R., Macmahon, S., et al. (1990). Blood pressure, stroke, and coronary heart disease. Part 2: Short-term reductions in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet; 335:827-38.

Datasus. (2007). [homepage na internet]. Indicadores e dados básicos – Brasil.

Driggin, E., Madhavan, M. V., Bikdeli, B., Chuich, T., Laracy, J., Bondi-Zoccai, G., et al. (2020). Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol.

Ewing, D. J., Marten, C. N., Young, R. J., Clarke, B. F. (1985). The value of cardiovascular autonomic function tests: 10 years experience in diabets. Diabets Care; 8:491-8.

Fang, L., Karakiulakis, G., Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med; 8:e21.

FioCruz - Fundacao Oswaldo Cruz. (2020). [homepage nainternet]. Covid-19: Fiocruz Amazonia conclui o primeiro sequenciamento do vírus na região Norte.

Gamelin, F. X., Berthoin, S., Bosquet, L. (2006). Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc; 38(5):887-93.

Gautret, P., Lagier, J. C., Parola, P., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International journal of antimicrobial agents. 105949.

Grundy, S. M., Pasternak, R., Greenland, P., Smith Jr, S., Fuster, V. (1999). Assessment of cardiovascular risk by use of multiplerisk- factor assessment equations: A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation; 100:1481-92.

Grundy, S. M. (1999). Age as a risk factor: you are old as your arteries. Am J Cardiol; 83:1455-7.

Guyton, A. C., & Hall, J. E. (2006). Tratado de Fisiologia Médica. Elsevier edição 11.

Hon, E. H., & Lee, S. T. (1965). Electronic evaluations of the fetal heart rate patterns preceding fetal death. Am J Obstet Gynecol; 87:817-26.

Junqueira Jr, L. F. (1990). Sobre o possível papel da disfunção autonômica cardíaca na morte súbita associada à doença de Chagas. Arq Bras Cardiol; 56(6):429-34.

Juurlink, D. N. (2020). Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ.

Kauark, F. (2010). Metodologia da pesquisa: guia prático / Fabiana Kauark, Fernanda Castro Manhães e Carlos Henrique Medeiros. – Ita- buna: Via Litterarum editora, 88p.

Kenneth Mcintosh, M. D. (2020). Coronavirus disease 2019 (COVID-19). Available at: https://www. uptodate.com/contents/coronavirus-disease-2019-covid-19 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA network open; 3(4): e208857.

Kim, Y., Kwon, O., Paek, J. H., et al. (2020). Two distinct cases with COVID-19 in kidney transplant recipients. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

Lane, et al. (2020). Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study.

Leon, D. F, Shaver, L. A., & Leonard, J. J. (1970). Reflex heart rate control in man. Am heart 2. J; 80:729-39.

Lima, J. G., Nóbrega, L. H. C., Nóbrega, M. L. C., Bandeira, F., & Souza, A. G. P. (2002). Dislipidemia pós-prandial como achado precoce em indivíduos com baixo risco cardiovascular. Arq Bras Endocrinol Metab; 46(3): 249-254.

Malta, D. C., Cezario, A. C., & Moura, L. (2006). A construção da vigilância e prevenção das doenças crônicas não transmissíveis no contexto do Sistema Único de Saúde. Epidemiol Serv Saúde; 15(3): 47-65

Marães, V. R., Silva, E., Catai, A. M., Novais, L. D., Moura, M. S., Oliveira, L., et al. (2005). Identification of anaerobic threshold using heart rate response during dynamic exercise. Braz J Med Biol Res; 38(5): 731-5.

Million, M. (2020). Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel medicine and infectious disease.

Mitchell, J. J. B. (1990). Wolffe memorial lecture. Neural control of the circulation 3. during exercise. Med Sci Sports Exerc; 22(2): 141-54.

Monteiro, C. A., D’A Benicio, M. H., Conde, W. L., & Popkin, B. M. (2000). Shifting obesity trends in Brazil. Eur J Clin Nutr; 54:342-6.

Opas. Organizacao Pan-Americana Da Saude (2020). [homepage na internet]. OMS afirma que COVID-19 e agora caracterizada como pandemia.

Santos, R. D., Spósito, A. C., Santos, J. E, et al. (2000). Programa de avaliação nacional do conhecimento sobre prevenção da aterosclerose (PANDORA): Como tem sido feito o tratamento das dislipidemias pelos médicos brasileiros. Arq Bras Cardiol; 75:289-95. A.

Santos, R. D., Sposito, A. C., Ventura, L. I., César, L. A. M., Ramires, J. A. F., & Maranhão, R. C. (2000). Pravastatin increases the plasma removal of chylomicron-like emulsions in men with coronary artery disease. Am J Cardiol; 85:1163-6. B.

Santos, R. D., Ventura, L. I., Spósito, A. C., Schreiber, R., Ramires, J. A. F., & Maranhão, R. C. (2001). The effects of gemfibrozil upon the metabolism of chylomicron-like emulsions in patients with endogenous hypertriglyceridemia. Cardiovasc Res; 49:456-65.

Wan Y, Shang J, Graham R, et al. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol; 94.

Zheng, Y. Y., Ma, Y. T, Zhang, J. Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nat Rev Cardiol.

Published

02/07/2021

How to Cite

CONCEIÇÃO, C. F. N. da; PINHEIRO NETO, J. C.; SILVA, H. J. N. da; GARCIA, A. C. H. .; FRAZÃO, D. W. P.; VIANA, D. do N.; SOARES, A. M. .; PESSOA, L. de F. .; FURTADO, D. R. L.; SOUSA, L. de O. .; GOIANO, P. D. de O. L.; OLIVEIRA JUNIOR, E. F. S. .; SOUSA, I. J. O. .; GONÇALVES, R. L. G. .; SILVA, K. M. R. da. The impact of the SARS-CoV-2 pandemic on cardiovascular diseases. Research, Society and Development, [S. l.], v. 10, n. 7, p. e53210716590, 2021. DOI: 10.33448/rsd-v10i7.16590. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16590. Acesso em: 22 dec. 2024.

Issue

Section

Health Sciences