The use of time series models for forecast corn production in Mato Grosso state

Authors

DOI:

https://doi.org/10.33448/rsd-v9i1.1915

Keywords:

Time series; Forecast models; Corn production.

Abstract

The Mato Grosso State is the main producer of corn of the Brazil and its production has been increasing every year. In this sense, is very important to gain information about future production to planning and monitoring of the corn crops. In this way, the main aim of this paper is to compare the performance showed by the forecast models of time series and to choose the best model. The historical data of corn crop from 1976/1977 to 2017/2018 was obtained with CONAB (The Brazilian National Supply Company). Then, the time series pattern was analyzed, as well as the descriptive statistics of the data obtained. Subsequently, electronic spreadsheets were developed for application and analysis of the evaluated models. With the results it was verified that the trend exponential smoothing model (Holt's linear model) presented the smallest prediction errors, and then it was selected to predict the next seven crops (from 2018/2019 to 2024/2025). The forecast obtained by this model for the 2024/2025 crop indicates that total corn production in the state of Mato Grosso will increase by approximately 70% compared to the 2017/2018 crop production.

References

Ali, M. M., Babai, M. Z., Boylan, J. E., & Syntetos, A. A. (2017). Supply chain forecasting when information is not shared. European Journal of Operational Research, 260(3), 984–994.

Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016). Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting, 32(2), 303–312.

Cas, C. G. (2018). Application of the ARIMA model to forecast the price of the commodity corn. Revista Gestão da Produção Operações e Sistema, 11(1), 263–279.

Conab – Companhia Nacional de Abastecimento. Série histórica das safras: 2019. Acesso em 21 de agosto, em https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=20.

Costa, C. A., Cândido, G. A., & Macedo, L. B. (2016). Análise descritiva e comparativa do programa soja plus no estado de Mato Grosso: uma abordagem a partir da responsabilidade social empresarial. Revista de Administração e Negócios da Amazônia, 8(3), 292–314.

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. Embrapa Milho e Sorgo: 2015. Acesso em 27 de agosto, em https://www.spo.cnptia.embrapa.br/conteudo?p_p_lifecycle=0&

p_p_id=conteudoportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_col_count=1&p_p_col_id=column-1&p_p_state=normal&p_r_p_-293187_sistemaProducaoId=7905&p_r_p_9

_topicoId=8668&p_p_mode=view.

Empaer - Empresa Mato Grossense de Pesquisa Assistencia e Extensao Rural. Calendário agrícola: 2019. Acesso em 27 de setembro, em http://www.empaer.mt.gov.br/-/8066843-calendario-agricola?ciclo=

Gil, A. C. (2017). Como elaborar projetos de pesquisa. São Paulo: Atlas.

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5–10.

Hyndman, R. J., & Athanasopoulos, G. (2014). Optimally Reconciling Forecasts in a Hierarchy. Foresight: The International Journal of Applied Forecasting, (35), 42–48.

Knechtel, M. R. (2014). Metodologia da pesquisa em educação: uma abordagem teórico-prática dialogada. Curitiba: Intersaberes.

Levine, D. M., Stephan, D. F., & Szabat, K. A. (2016). Estatística - Teoria e Aplicações - Usando Microsoft Excel. Rio de Janeiro: LTC.

Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods ans Applications. New York: John Wiley & Sons.

Marchezan, A., & Souza, A. M. (2010). Previsão do preço dos principais grãos produzidos no Rio Grande do Sul. Ciência Rural, 40(11), 2368–2374.

Nomelini, Q. S. S., Ferreira, E. B., Nogueira, D. A., Golynski, A. A., Golynski, A., & Villa, T. E. (2017). Uso de modelagem univariada e multivariada com séries temporais como ferramenta de gestão do agronegócio na cultura de soja do Brasil. Revista Espacios, 38(8).

Prodanov, C. C., & Freitas, E. C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. Novo Hamburgo-RS: Feevale.

Rosienkiewicz, M., Chlebus, E., & Detyna, J. (2017). A hybrid spares demand forecasting method dedicated to mining industry. Applied Mathematical Modelling, 49, 87–107.

SNA - Sociedade Nacional de Agricultura. Milho é uma das principais fontes de alimento do brasileiro com importância estratégica no agronegócio: 2016. Acesso 25 de setembro, em https://www.sna.agr.br/milho-e-uma-das-principais-fontes-de-alimento-do-brasileiro-comimp

ortancia-estrategica-no-agronegocio/

Silva, R. B. Z., Aires, F. F. C., Oenning, E. J., Porto, A. G., & Ultramari, A. V. (2019). Previsões de indicadores da soja no estado de Mato Grosso a partir de modelos baseados em séries temporais. Brazilian Journal of Production Engineering - BJPE, 5(3), 67–81.

Souza, A. E., Reis, J. G. M., Raymundo, J. C., & Pinto, R. S. (2018). Estudo da produção do milho no Brasil. South American Development Society Journal, 4(11), 182–194.

Sridevi, U. K., Palaniappan, S., & Palanisamy, N. (2018). A profit prediction model with time series analysis for retail store. International Journal of Pure and Applied Mathematics, 119(2), 1931–1940.

Tibulo, C., & Carli, V. (2014). Previsão do preço do milho, através de séries temporais. Scienta Plena, 10, 1–10.

Veiga, C. P., Veiga, C. R. P., Puchalski, W., Coelho, L. S., & Tortato, U. (2016). Demand forecasting based on natural computing approaches applied to the foodstuff retail segment. Journal of Retailing and Consumer Services, 31, 174–181.

Published

01/01/2020

How to Cite

SILVA, R. B. Z. da; SILVA, R. N. Z. da; AIRES, F. F. da C.; SOARES, E. J. O. The use of time series models for forecast corn production in Mato Grosso state. Research, Society and Development, [S. l.], v. 9, n. 1, p. e184911915, 2020. DOI: 10.33448/rsd-v9i1.1915. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/1915. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences