Anxiolytic activity of ferulic acid in the light-dark test in zebrafish
DOI:
https://doi.org/10.33448/rsd-v10i11.19894Keywords:
Zebrafish; Ferulic Acid; Anxiety.Abstract
The anxiety disorders belong to a group of mental disorders in which the patients present excessive fear and worry. Studies with ferulic acid have shown positive results on treating depressive symptoms. As many antidepressive drugs are effective in treating anxiety, the objective of the present study was to evaluate ferulic acid’s anxiolytic activity and possible mechanism of action in the light-dark test in zebrafish. To evaluate anxiolytic activity, the light-dark preference test was performed after exposure of the animals to ferulic acid or positive control (clonazepam or fluoxetine). Ferulic acid increased the time spent in the clear compartment at concentrations of 250 and 500 mg/L, not differing from the groups exposed to clonazepam or fluoxetine. To evaluate the possible mechanism of action, pre-exposure to flumazenil was carried out, followed by exposure to ferulic acid or positive control, with subsequent testing. Pre-exposure to flumazenil caused a significant reduction in the time spent in the clear compartment of ferulic acid and clonazepam groups but did not alter the effect of exposure to fluoxetine. These results suggest that ferulic acid promotes an anxiolytic effect, possibly through an action at the benzodiazepine binding site at the GABAA receptor.
References
Abreu, M. S., Giacomini, A. C. V. V., Koakoski, G., Piato, A. L. S., & Barcellos, L. J. G. (2017). Divergent effect of fluoxetine on the response to physical or chemical stressors in zebrafish. PeerJ, 5, e3330. https://doi.org/10.7717/peerj.3330
Ammar, G., Naja, W. J., & Pelissolo, A. (2015). Troubles anxieux résistants : revue des stratégies de traitements médicamenteux. L’Encéphale, 41(3), 260–265. https://doi.org/10.1016/j.encep.2013.11.002
Benneh, C. K., Biney, R. P., Mante, P. K., Tandoh, A., Adongo, D. W., & Woode, E. (2017). Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebra fi sh — Involvement of GABAergic and 5-HT systems. Journal of Ethnopharmacology, 207, 129–145. https://doi.org/10.1016/j.jep.2017.06.012
Bourin, M., & Hascoët, M. (2003). The mouse light-dark box test. European Journal of Pharmacology, 463(1–3), 55–65. https://doi.org/10.1007/978-1-60761-303-9-11
Celik, T., Deniz, G., Uzbay, I. T., Palaoğlu, O., & Ayhan, I. H. (1999). The effects of flumazenil on two way active avoidance and locomotor activity in diazepam-treated rats. European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology, 9(1–2), 45–50. https://doi.org/10.1016/S0924-977X(97)00101-6
Chen, J., Lin, D., Zhang, C., Li, G., & Zhang, N. (2015). Antidepressant-like effects of ferulic acid: involvement of serotonergic and norepinergic systems. Metab Brain Dis, (30), 129–136. https://doi.org/10.1007/s11011-014-9635-z
Gebauer, D. L., Pagnussat, N., Piato, A. L., Schaefer, I. C., Bonan, C. D., & Lara, D. R. (2011). Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacology, Biochemistry, and Behavior, 99(3), 480–486. https://doi.org/10.1016/j.pbb.2011.04.021
Giacomini, A. C. V. V, Abreu, M. S., Giacomini, L. V., Siebel, A. M., Zimerman, F. F., Rambo, C. L., … Barcellos, L. J. G. (2016). Fluoxetine and diazepam acutely modulate stress induced-behavior. Behavioural Brain Research, 296, 301–310. https://doi.org/10.1016/j.bbr.2015.09.027
Hacke, A. C. M., Miyoshi, E., Marques, J. A., & Pereira, R. P. (2020). Anxiolytic properties of Cymbopogon citratus (DC.) stapf extract, essential oil and its constituents in zebrafish (Danio rerio). Journal of Ethnopharmacology, 260(January). https://doi.org/10.1016/j.jep.2020.113036
Khan, K. M., Collier, A. D., Meshalkina, D. A., Kysil, E. V, Khatsko, S. L., Kolesnikova, T., … Echevarria, D. J. (2017). Zebrafish models in neuropsychopharmacology and CNS drug discovery. British Journal of Pharmacology, 174, 1925–1944. https://doi.org/10.1111/bph.13754
Lenze, E. J., & Wetherell, J. L. (2011). A Lifespan view of anxiety disorders. Dialogues in Clinical Neuroscience, 13(4), 381–399. https://doi.org/10.1097/BOR.0b013e32834b5457
Li, G., Ruan, L., Chen, R., Wang, R., Xie, X., Zhang, M., … Pan, J. (2015). Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab Brain Dis., 30(6), 1505–1514. https://doi.org/10.1007/s11011-015-9704-y.Synergistic
Liu, Y. M., Hu, C. Y., Shen, J. D., Wu, S. H., Li, Y. C., & Yi, L. T. (2017). Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression. Physiology and Behavior, 169, 184–188. https://doi.org/10.1016/j.physbeh.2016.12.003
Machado, K. C., Oliveira, G. L. S., Machado, K. C., Islam, M. T., Junior, A. L. G., De Sousa, D. P., & Freitas, R. M. (2015). Anticonvulsant and behavioral effects observed in mice following treatment with an ester derivative of ferulic acid: Isopentyl ferulate. Chemico-Biological Interactions, 242, 273–279. https://doi.org/10.1016/j.cbi.2015.10.003
Magno, L. D. P., Fontes, A., Gonçalves, B. M. N., & Gouveia, A. (2015). Pharmacological study of the light-dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacology Biochemistry and Behavior, 135, 169–176. https://doi.org/10.1016/j.pbb.2015.05.014
Maximino, C., da Silva, A. W. B., Gouveia, A., & Herculano, A. M. (2011). Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 624–631. https://doi.org/10.1016/j.pnpbp.2011.01.006
Parker, M. O., Millington, M. E., Combe, F. J., & Brennan, C. H. (2012). Development and implementation of a three-choice serial reaction time task for zebrafish ( Danio rerio ). Behav Brain Res, 227(1), 73–80. https://doi.org/10.1016/j.bbr.2011.10.037.Development
Richendrfer, H., Pelkowski, S. D., Colwill, R. M., & Creton, R. (2012). On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res, 228(1), 99–106. https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial
Theodoridi, A., Tsalafouta, A., & Pavlidis, M. (2017). Acute exposure to fluoxetine alters aggressive behavior of zebrafish and expression of genes involved in serotonergic system regulation. Frontiers in Neuroscience, 11, 1–9. https://doi.org/10.3389/fnins.2017.00223
Wang, S. M., Kim, J. B., Sakong, J. K., Suh, H. S., Oh, K. S., Woo, J. M., … Lee, K. U. (2016). The efficacy and safety of clonazepam in patients with anxiety disorder taking newer antidepressants: A multicenter naturalistic study. Clinical Psychopharmacology and Neuroscience, 14(2), 177–183. https://doi.org/10.9758/cpn.2016.14.2.177
Xu, Y., Zhang, L., Shao, T., Ruan, L., Wang, L., Sun, J., … Pan, J. (2013). Ferulic acid increases pain threshold and ameliorates depression-like behaviors in reserpine-treated mice: Behavioral and neurobiological analyses. Metabolic Brain Disease, 28(4), 571–583. https://doi.org/10.1007/s11011-013-9404-4
Zeni, A. L. B., Camargo, A., & Dalmagro, A. P. (2017). Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids, 125, 131–136. https://doi.org/10.1016/j.steroids.2017.07.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Susi Mara Soecki Sborgi; Lillian Caroline Fernandes; Anderson Gustavo Santos; Marcelo Machado Ferro; Edmar Miyoshi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.