Modelling and simulation of the ion exchange process for Zn2+(aq) removal using zeolite NaY

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20362

Keywords:

Ion Exchange; NaY zeolite; Aspen Adsorption; Simulation; Kinetic modelling.

Abstract

The treatment of water contaminated by toxic metals using ion exchange with zeolites is becoming attractive due to its low capital costs and high potential for removal capacity. Mathematical modelling of this process allows for operational control and estimation of the ability to remove these metals. In this work, the kinetic modelling was performed based on finite bath experimental data, with Intraparticle Diffusion (IPD) and External Liquid Film Mass Transfer (MTEF) models. The models Thomas (TH), Yoon-Nelson (YN) and Solid Film Mass Transfer (MTSF) were used to estimate the saturation time, ion exchange capacity and sizing variables of a fixed bed column. For the finite bath system, the results showed that the mass transfer was better represented by the IPD phenomenon. The breakthrough curve obtained by the Aspen Adsorption (MTSF) model presented the best fit, compared with experimental data, with R2≥0.9923. The average ion exchange capacities calculated for MTSF, TH and YN were respectively 2.22, 2.12 and 2.07 meq Zn2+(aq)/ g of zeolite. The model simulated with Aspen Adsorption was also used to analyze the continuous system behaviour, by varying the height of the bed. It was observed that increasing the height, the saturation time and ion exchange capacity also increase, while reducing the height makes axial dispersion the predominant mass transfer phenomenon, which reduces the diffusion of Zn2+(aq) ions.

Author Biographies

Andrezza de Araújo Silva Gallindo, Federal University of Campina Grande

Chemical Engineering Department

Reinaldo Alves da Silva Junior, Federal University of Pernambuco

Department of Biochemistry

Meiry Gláucia Freire Rodrigues, Federal University of Campina Grande

Chemica Engineering Department

Wagner Brandão Ramos, Federal University of Campina Grande

Chemical Engineering Department

References

Abdi, J., & Abedini, H. (2020). MOF-based polymeric nanocomposite beads as an efficient adsorbent for wastewater treatment in batch and continuous systems: Modelling and experiment. Chemical Engineering Journal, 400.

Abdi, J., Vossoughi, M., Mahmoodi, N. M., & Alemzadeh, I. (2017). Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal, 326, 1145–1158.

Abrão, A. (2014). Operações de troca iônica. IPEN.

Adornado, A. P., Soriano, A. B., Orfiana, O. N., Pangon, M. B. J., & Nieva, A. D. (2016). Simulated biosorption of cd(ii) and cu(ii) in single and binary metal systems by water hyacinth (eichhornia crassipes) using aspen adsorption. Asean Journal of Chemical Engineering, 16(2), 21–43.

Bergseth, H. (1980). Selektivität von IIIit, Vermiculit und Smectit gegenüber Cu2+, Pb2+, Zn2+, Cd2+ und Mn2+. Acta Agriculturae Scandinavica, 30(4), 460–468.

Calábria, J. A. A., Ladeira, A. C. Q., & Cota, S. D. S. (2017). Estudo da sorção de césio em solos: Avaliação do desempenho em repositório de rejeitos radioativos. Revista Ibero-Americana de Ciências Ambientais, 8(2), 190–204.

Calvet, R. (1989). Adsorption of organic chemicals in soils. Environmental Health Perspectives, 83, 145–177.

Chen, J. P., Wu, S., & Chong, K. H. (2003). Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon, 41, 1979–1986.

Cupertino, M. C., Moreira, I. F. V., Coelho, M. A., Amaral, Y. F. Q., & Teixeira, D. C. L. (2020). Exposição a contaminantes ambientais inorgânicos e danos à saúde humana. Brazilian Journal of Health Review, 3(4), 10353–10369.

Fagnani, H. M. C., Deolin, M. E., Clays, M. A. D., & Arroyo, P. A. (2017). Identificação dos mecanismos de sorção em zeólita NaY e sílica gel. Revista Matéria, 22(3).

Jung, K. W., Jeong, T. U., Choi, J. W., Ahn, K. H., & Lee, S. H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, 23–32.

Lambert, S. M. (1967). Functional relationship between sorption in soil and chemical structure. J. Agr. Food Chem., 15(4), 572–576.

Lattanzi, A. M., Pecha, M. B., Bharadwaj, V. S., & Ciesielski, P. N. (2020). Beyond the effectiveness factor: Multi-step reactions with intraparticle diffusion limitations. Chemical Engineering Journal, 380.

Lazzaretti, L. L., & Hupffer, H. M. (2018). Nanotecnologia: O olhar da ciência sobre a toxicidade e os potenciais riscos desses produtos. Revista Conhecimento Online, 3(10), 79–100.

Matti, A. H., & Surchi, K. M. (2014). Kinetics of cation exchange capacity of homoionic sodium form nay zeolite. International Journal of Innovative Research in Science, Engineering and Technology, 3(6), 13137–13145.

Montgomery, O. C., & Peck, E. A. (1982). Introduction to linear regression analysis. John Wiley & Sons.

Nakajima, H. (2013). Mass transfer: Advances in sustainable energy and environment oriented numerical modelling. IntechOpen.

Nieva, A. D., Andres, J. C. S., & Gonzales, K. P. (2018). Simulated biosorption of cu2+ in aqueous solutions using cucumis melo VAR. cantalupensis. IOP Conf. Series: Earth and Environmental Science, 191.

Nieva, A. D., Garcia, R. C., & Ped, R. M. R. (2019). Simulated biosorption of cr6+ using peels of litchi chinensis sonn by aspen adsorption® V8.4. International Journal of Environmental Science and Development, 10(10), 331–337.

Nkedi-Kizza, P., & Brown, K. D. (1998). Sorption, degradation and mineralization of carbaryl in soils , for single-pesticide and multiple-pesticide systems. Journal Environmental Quality, 27, 1318–1324.

Oliveira, G. M. T. S., Oliveira, E. S., Santos, M. L. S., Melo, N. F. A. C., & Krag, M. N. (2018). Concentrações de metais pesados nos sedimentos do lago água preta (pará, brasil). Engenharia Sanitária e Ambiental, 23(3), 599–605.

Ostroski, I. C., Barros, M. A. S. D., Silva, E. A., Dantas, J. H., Arroyo, P. A., & Lima, O. C. M. (2008). A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. Journal of Hazardous Materials, 161, 1404–1412.

Ostroski, I. C., Dantas, J. H., Canavesi, R. L. S., Silva, E. A., Arroyo, P. A., & Barros, M. A. S. D. (2011). Removal of Fe (II) in fixed bed of NaY zeolite. Acta Scientiarum Technology, 33(3), 305–312.

Puranik, P. R., Modak, J. M., & Paknikar, K. M. (1999). A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy, 52, 189–197.

Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. Wiley and Sons.

Silva, M. A., & Miranda, M. N. N. (2003). Estimation of properties of ternary mixtures of solids using the mixing rule. Powder Technology, 134, 16–23.

Silva, M. A., & Souza, F. V. (2004). Drying behavior of binary mixtures of solids. Drying Technology: An International Journal, 22, 165–177.

Silva, R. T. S., Dervanoski, A., Haupenthal, L. D., Souza, S. M. A. G. U., Souza, A. A. U., & Luz, C. (2015). Simulação numérica e ensaios experimentais da remoção de Fe (III) da água para utilização nas indústrias alimentícias. Engenharia Sanitária Ambiental, 20(4), 653–663.

Singha, S., Sarkar, U., Mondal, S., & Saha, S. (2012). Transient behavior of a packed column of Eichhornia crassipes stem for the removal of hexavalent chromium. Desalination, 297, 48–58.

Slater, M. J. (1991). The principles of ion exchange technology. Butterworth-Heinemann.

Souza, M. D., Boeira, R. C., Gomes, M. A. F., Ferracini, V. L., & Maia, A. H. N. (2001). Adsorção e lixiviação de tebuthiuron em três tipos de solo. Revista Brasileira de Ciências do Solo, 25, 1053–1061.

Stephen, J. A., Gan, Q., Matthews, R., & Johnson, A. (2005). Mass transfer processes in the adsorption of basic dyes by peanut hulls. Industrial Engineering Chemical Research, 44, 1942–1949.

Tantet, J., Eic, M., & Desai, R. (1994). Experimental and theoretical studies of sulfur dioxide and water adsorption in hydrophobic zeolites. Studies in Surface Science and Catalysis, 84, 1269–1276.

Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666.

Trgo, M., Medvidovic, N. V., & Perié, J. (2011). Application of mathematical empirical models to dynamic removal of lead on natural zeolite clinoptilolite in a fixed bed column. Indian Journal of Chemical Technology, 18, 123–131.

Vermeulen, T. (1958). Advances in chemical engineering. Academic Press.

Zhang, Y. P., Adi, V. S. K., Huang, H. L., Lin, H. P., & Huang, Z. H. (2019). Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry, 76, 240–244.

Zheng, H., Han, L., Ma, H., Zheng, Y., Zhang, H., Liu, D., & Liang, S. (2008). Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials, 158, 577–584.

Downloads

Published

23/09/2021

How to Cite

GALLINDO, A. de A. S.; SILVA JUNIOR, R. A. da; RODRIGUES, M. G. F.; RAMOS, W. B. . Modelling and simulation of the ion exchange process for Zn2+(aq) removal using zeolite NaY. Research, Society and Development, [S. l.], v. 10, n. 12, p. e310101220362, 2021. DOI: 10.33448/rsd-v10i12.20362. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20362. Acesso em: 26 nov. 2024.

Issue

Section

Engineerings