Muscle regeneration mechanisms stimulated by ultrasound therapy

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.21044

Keywords:

Ultrasound; Skeletal muscle; Muscle cells; Muscle injury.

Abstract

Therapeutic ultrasound (UST) has been used by physiotherapists since 1950 in the treatment of musculoskeletal injuries. Its actions are mainly associated with increased cell metabolism and promotion of angiogenesis. In muscle, ultrasound is widely used in cases of injury, but little is known about the mechanisms in which it acts, although analgesy, regeneration and muscle strength rehabilitation have already been proven. Thus, this integrative review aimed to list the mechanisms by which the UST acts on muscle regeneration. Twenty-seven studies were selected, all of which were carried out with rodents. In injured muscles, UST seems to activate the phosphorylation pathway of kinases 1 and 2 regulated by extracellular signaling (ERK1/2) and mitogen-activated protein kinase 38 (MAPK p38), reducing the inflammatory response and increasing the expression of myogenic factors. These factors activate the differentiation of muscle satellite cells. The proliferation of muscle cells translates into a greater number of myofibrils, that is, a greater number of contractile units. Thus, the UST can help in muscle rehabilitation, by promoting responses in cell metabolism and favoring the differentiation of satellite cells, with subsequent formation of new fibers.

References

Agne, J. E. (2006). Eletrotermoterapia: Teoria e Prática. Orium.

Allen, R. E., & Rankin, L. L. (1990). Regulation of Satellite Cells during Skeletal Muscle Growth and Development. Proceedings of the Society for Experimental Biology and Medicine, 194(2), 81–86.

Artifon, E. L., Ferrari, D., Cunha, D. M., Nascimento, C. M., Ribeiro, L. F. C., & Bertolini, G. R. F. (2012). Efeitos do ultrassom terapêutico associados ao alongamento estático sobre parâmetros histomorfométricos longitudinais de sóleos imobilizados de ratos. Revista Brasileira de Medicina do Esporte, 18(5), 341-344.

Artilheiro, P. P., Barbosa, J. L. P., Fernandes, K. P. S., Oliveira, T. S. de., Bussadori, S. K., & Mesquita-Ferrari, R. A. (2012). Análise comparativa dos efeitos do ultrassom terapêutico e laser de baixa potência sobre a proliferação de células musculares durante a diferenciação celular. Fisioterapia Em Movimento, 25(1), 21–29.

Artilheiro, P. P., Oliveira, E. N., Viscardi, C. S., Martins, M. D., Bussadori, S. K., Fernandes, K. P. S., & Mesquita-Ferrari, R. A. (2010). Efeitos do ultra-som terapêutico contínuo sobre a proliferação e viabilidade de células musculares C2C12. Fisioterapia e Pesquisa, 17(2), 167–172.

Barbosa, H. H. S., Do Nascimento Filho, J. H., Nonato, D. T. T., de Almeida, M. J. M., Silva, F. S., Abreu, B. J., & Vieira, W. H. de B. (2014). Efeito do ultrassom terapêutico sobre as propriedades mecânicas do gastrocnêmio em ratos. Revista Brasileira de Medicina Do Esporte, 20(2), 151–155.

Bassoli, D. A. (2001). Avaliação dos efeitos do ultra-som pulsado de baixa intensidade na regeneração de músculos esqueléticos com vistas à aplicabilidade em clínica fisioterapêutica. Dissertação de Mestrado em Bioengenharia - Bioengenharia, Universidade de São Paulo, São Carlos, São Paulo, Brasil. https://doi:10.11606/D.82.2001.tde-09102001-162859

Bennett, A. F. (1985). Temperature and muscle. Journal of Experimental Biology, vol. 115, 333–344.

Borges, F. S. (2006). Dermato-Funcional: Modalidades Terapêuticas nas Disfunções Estéticas. Phorte.

Burkholder, T. J., & Lieber, R. L. (2001). Sarcomere length operating range of vertebrate muscles during movement. Journal of Experimental Biology, 204(9), 1529–1536.

Caierão, Q., Teodori, R., & Minamoto, V. (2007). A influência da imobilização sobre o tecido conjuntivo muscular: uma revisão. Fisioter. Mov, 20(3), 87–92.

Chan, Y. S., Hsu, K. Y., Kuo, C. H., Lee, S. D., Chen, S. C., Chen, W. J., & Ueng, S. W. N. (2010). Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: An in vitro and in vivo study. Ultrasound in Medicine and Biology, 36(5), 743–751.

Chan, Y. S., Li, Y., Foster, W., Fu, F. H., & Huard, J. (2005). The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. American Journal of Sports Medicine, 33(1), 43–51.

Chongsatientam, A., & Yimlamai, T. (2016). Therapeutic Pulsed Ultrasound Promotes Revascularization and Functional Recovery of Rat Skeletal Muscle after Contusion Injury. Ultrasound in Medicine and Biology, 42(12), 2938–2949.

Chung, S. L., Pounder, N. M., de Ana, F. J., Qin, L., Sui Leung, K., & Cheung, W. H. (2011). Fracture Healing Enhancement With Low Intensity Pulsed Ultrasound at a Critical Application Angle. Ultrasound in Medicine and Biology, 37(7), 1120–1133.

Deasy, B. M., Peterson, Z. Q., Greenberger, J. S., & Huard, J., (2002). Mechanisms of Muscle Stem Cell Expansion with Cytokines. Stem Cells, 20(1), 50-60.

De Lima, L. S., Oliveira, D. P., Costa-Júnior, J. F. S., Pinto, P. A., Omena, T. P., Costa, R. M., Von Krüger, M. A., & De Albuquerque Pereira, W. C. (2017). Evaluation of gloves as a water bag coupling agent for therapeutic ultrasound. Revista Brasileira de Engenharia Biomedica, 33(1), 42–49.

De Macedo, A. C. B., Ywazaki, J. L., Martins, A. P. C., de Azevedo, M. L. V., Noronha, L., & Gomes, A. R. S. (2020). Effects of ultrasound and stretching on skeletal muscle contusion in rats: Immunohistochemistry analysis. International Journal of Morphology, 38(5), 1288–1295.

Dinno, M. A., Dyson, M., Young, S. R., Mortimer, A. J., Hart, J., & Crum, L. A. (1989). The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Physics in Medicine and Biology, 34(11), 1543–1552.

Draper, D. O., Castel, J. C., & Castel, D. (1995). Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. Journal of Orthopaedic and Sports Physical Therapy, 22(4), 142–150.

Duchateau, J., & Hainaut, K. (1990). Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. The Journal of Physiology, 422(1), 55–65.

Durigan, J. L. Q., Cancelliero, K. M., Reis, M. S., Dias, C. N. K., Graciotto, D. R., Silva, C. A. da., & Polacow, M. L. O. (2006). Mecanismos de interação do ultra-som terapêutico com tecidos biológicos TT - Mechanisms of therapeutical ultrasound interaction with biological tissues. Fisioter. Bras, 7(2), 142–148.

Dyson, M. (1982). Non-thermal cellular effects of ultrasound. British Journal of Cancer, 45(Suppl. 5), 165–171.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Faganello, F. R. (2003). Ação do ultra-som terapêutico no processo de regeneração do músculo esquelético. Dissertação de Mestrado do Programa de Ciências da Motricidade do Instituto de Biociências da Universidade Estadual Paulista, Campus de Rio Claro, São Paulo, Brasil.

Fantinati, M. S., Mendonça, D. E. O., Fantinati, A. M. M., dos Santos, B. F., Reis, J. C. O., Afonso, C. L., Vinaud, M. C., & Lino Júnior, R. D. S. (2016). Low intensity ultrasound therapy induces angiogenesis and persistent inflammation in the chronic phase of the healing process of third degree burn wounds experimentally induced in diabetic and non-diabetic rats. Acta Cirurgica Brasileira, 31(7), 463–471.

Fernandes, T. L., Pedrinelli, A., & Hernandez, A. J. (2011). Lesão muscular - Fisiopatologia, diagnóstico, tratamento e apresentação clínica. Revista Brasileira de Ortopedia, 46(3), 247–255.

Garrett, C. L., Draper, D. O., & Knight, K. L. (2000). Heat Distribution in the Lower Leg from Pulsed Short-Wave Diathermy and Ultrasound Treatments. Journal of Athletic Training, 35(1), 50–55.

George, N. T., & Daniel, T. L. (2011). Temperature gradients in the flight muscles of manduca sexta imply a spatial gradient in muscle force and energy output. Journal of Experimental Biology, 214(6), 894–900.

Gouvêa, C., Vieiral, P., & Amara, A. (1998). Efeito Do Ultra-Som Na Recuperação De Músculo Tibial Anterior De Rato Lesado. R. Un. Alfenas, 4, 165–173.

Grounds, M. D. (1991). Towards Understanding Skeletal Muscle Regeneration. Pathology Research and Practice, 187(1), 1–22.

Ikeda, K., Takayama, T., Suzuki, N., Shimada, K., Otsuka, K., & Ito, K. (2006). Effects of low-intensity pulsed ultrasound on the differentiation of C2C12 cells. Life Sciences, 79(20), 1936–1943.

Iwanabe, Y., Masaki, C., Tamura, A., Tsuka, S., Mukaibo, T., Kondo, Y., & Hosokawa, R. (2016). The effect of low-intensity pulsed ultrasound on wound healing using scratch assay in epithelial cells. Journal of Prosthodontic Research, 60(4), 308–314. https://doi.org/10.1016/j.jpor.2016.03.002

Johns, L. D. (2002). Nonthermal effects of therapeutic ultrasound: The frequency resonance hypothesis. Journal of Athletic Training, 37(3), 293–299.

Karnes, J. L., & Burton, H. W. (2002). Continuous therapeutic ultrasound accelerates repair of contraction-induced skeletal muscle damage in rats. Archives of Physical Medicine and Rehabilitation, 83(1), 1–4.

Kim, S., Hwang, D., Lee, H., Seo, D., Cho, S., Jung, B., Seo, J., & Kim, H. S. (2018). Therapeutic Effects of Multimodal Biophysical Stimulation on Muscle Atrophy in a Mouse Model. International Journal of Precision Engineering and Manufacturing, 19(10), 1553–1560.

Kitchen, S. (2003). Eletroterapia: Prática Baseada em Evidências. Manole.

Kobayashi, Y., Sakai, D., Iwashina, T., Iwabuchi, S., & Mochida, J. (2009). Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. European Cells and Materials, 17, 15–22.

Koike, T. E., Camargo, R. C. T., Ozaki, G. A. T., Castoldi, R. C., Seraphim, P. M., Oikawa, S. M., & Camargo Filho, J. C. S. (2016). Morphometric and fractal analysis of injured skeletal muscle tissue subjected to a combination of treatments; cryotherapy and therapeutic ultrasound | An?lisis de la morfometr?a y de la dimensi?n fractal en la lesi?n del tejido muscular esquel?tico expues. International Journal of Morphology, 34(3), 1076–1082.

Lessard, J. L. (1988). Two monoclonal antibodies to actin: one muscle selective and one generally reactive. Cell Motility and the Cytoskeleton, 10(3), 349–362.

Manaka, S., Tanabe, N., Kariya, T., Naito, M., Takayama, T., Nagao, M., Liu, D., Ito, K., Maeno, M., Suzuki, N., & Miyazaki, M. (2015). Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells. FEBS Letters, 589(3), 310–318.

Markert, C. D., Merrick, M. A., Kirby, T. E., & Devor, S. T. (2005). Nonthermal ultrasound and exercise in skeletal muscle regeneration. Archives of Physical Medicine and Rehabilitation, 86(7), 1304–1310.

Matheus, J., Oliveira, F., Gomide, L., Milani, J., Volpon, J., & Shimano, A. (2008). Efeitos do ultra-som terapêutico nas propriedades mecânicas do músculo esquelético após contusão. Revista Brasileira de Fisioterapia, 12(3), 241–247.

Matsumoto, Y., Nakano, J., Oga, S., Kataoka, H., Honda, Y., Sakamoto, J., & Okita, M. (2014). The Non-Thermal Effects of Pulsed Ultrasound Irradiation on the Development of Disuse Muscle Atrophy in Rat Gastrocnemius Muscle. Ultrasound in Medicine and Biology, 40(7), 1578–1586.

Mendonça, A. C., Ferreira, A. da S., Barbieri, C. H., Thomazine, J. A., & Mazzer, N. (2006). Efeitos do ultra-som pulsado de baixa intensidade sobre a cicatrização por segunda intenção de lesões cutâneas totais em ratos. Acta Ortopédica Brasileira, 14(3), 152–157.

Menetrey, J., Kasemkijwattana, C., Fu, F. H., Moreland, M. S., & Huard, J. (1999). Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. American Journal of Sports Medicine, 27(2), 222–229.

Menezes, D., Volpon, J., & Shimano, A. (1999). Aplicação de ultra-som terapêutico em lesão muscular experimental aguda. Braz. j. Phys. Ther. (Impr.), 27–31.

Miller, D. L., Smith, N. B., Bailey, M. R., Czarnota, G. J., Hynynen, K., & Makin, I. R. S. (2012). Overview of therapeutic ultrasound applications and safety considerations. Journal of Ultrasound in Medicine, 31(4), 623–634.

Montalti, C. S., Souza, N. V. C. K. L., Rodrigues, N. C., Fernandes, K. R., Toma, R. L., & Renno, A. C. M. (2013). Effects of low-intensity pulsed ultrasound on injured skeletal muscle. Brazilian Journal of Physical Therapy, 17(4), 343–350.

Mortimer, A. J., & Dyson, M. (1988). The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound in Medicine and Biology, 14(6), 499–506.

Nagata, K., Nakamura, T., Fujihara, S., & Tanaka, E. (2013). Ultrasound modulates the inflammatory response and promotes muscle regeneration in injured muscles. Annals of Biomedical Engineering, 41(6), 1095–1105.

Naidu, P. S., Ludolph, D. C., To, R. Q., Hinterberger, T. J., & Konieczny, S. F. (1995). Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Molecular and Cellular Biology, 15(5), 2707–2718.

Okita, M., Nakano, J., Kataoka, H., Sakamoto, J., Origuchi, T., & Yoshimura, T. (2009). Effects of Therapeutic Ultrasound on Joint Mobility and Collagen Fibril Arrangement in the Endomysium of Immobilized Rat Soleus Muscle. Ultrasound in Medicine and Biology, 35(2), 237–244.

Pelosi, L., Giacinti, C., Nardis, C., Borsellino, G., Rizzuto, E., Nicoletti, C., Wannenes, F., Battistini, L., Rosenthal, N., Molinaro, M., & Musar, A. (2007). Local expression of IGF‐1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. The FASEB Journal, 21(7), 1393–1402.

Pertille, A., Macedo, A. B., & Oliveira, C. P. V. (2012). Avaliação da regeneração muscular em animais idosos após tratamento com laser de baixa intensidade. Brazilian Journal of Physical Therapy, 16(6), 495–501.

Piedade, M. C. B., & Caldini, E. T. E. G. (2010). Avaliação estrutural, estereológica e biomecânica do efeito da aplicação do ultrassom no reparo da lesão lacerativa experimental do gastrocnêmio de rato. Tese de Doutorado do programa de Fisiopatologia Experimental da Faculdade de Medicina da Universidade de São Paulo, São Carlos, São Paulo, Brasil.

Rantanen, J., Thorsson, O., Wollmer, P., Hurme, T., & Kalimo, H. (1999). Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. American Journal of Sports Medicine, 27(1), 54–59.

Rocha, D. A. M. (2010). Effects of therapeutic ultrasound in muscle regeneration and the expression of myogenic factors in skeletal muscle of rats after injury. Dissertação de Mestrado em Saúde da Universidade Nove de Julho, São Paulo, São Paulo, Brasil.

Rubira, A. P. F. D. A., Rubira, M. C., Rubira, L. D. A., Comachio, J., Magalhães, M. O., & Marques, A. P. (2019). Comparison of the effects of low-level laser and pulsed and continuous ultrasound on pain and physical disability in chronic non-specific low back pain: A randomized controlled clinical trial. Advances in Rheumatology, 59(1), 1–9.

Rudnicki, M. A., Le Grand, F., McKinnell, I., & Kuang, S. (2008). The molecular regulation of muscle stem cell function. Cold Spring Harbor Symposia on Quantitative Biology, 73, 323–331.

Sakamoto, J., Nakano, J., Kataoka, H., Origuchi, T., Yoshimura, T., & Okita, M. (2012). Continuous therapeutic ultrasound inhibits progression of disuse atrophy in rat gastrocnemius muscles. Journal of Physical Therapy Science, 24(5), 443–447.

Saturnino-Oliveira, J., Tomaz, M. A., Fonseca, T. F., Gaban, G. A., Monteiro-Machado, M., Strauch, M. A., Cons, B. L., Calil-Elias, S., Martinez, A. M. B., & Melo, P. A. (2012). Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom. Brazilian Journal of Medical and Biological Research, 45(6), 488–496.

Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., & Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell, 102(6), 777–786.

Speed, C. A. (2001). Therapeutic ultrasound in soft tissue lesions. Rheumatology, 40(12), 1331–1336.

St. Pierre, B. A., & Tidball, J. G. (1994). Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. Journal of Applied Physiology, 77(1), 290–297.

Tang, L., Li, N., Jian, W., Kang, Y., Yin, B., Sun, S., Guo, J., Sun, L., & Ta, D. (2017). Low-intensity pulsed ultrasound prevents muscle atrophy induced by type 1 diabetes in rats. Skeletal Muscle, 7(1), 1–10.

Tang, L., Zhang, J., Zhao, X., Li, N., Jian, W., Sun, S., Guo, J., Sun, L., & Ta, D. (2017). Low-Intensity Pulsed Ultrasound Promotes Exercise-Induced Muscle Hypertrophy. Ultrasound in Medicine and Biology, 43(7), 1411–1420.

Ter Haar, G. (1999). Therapeutic ultrasound. European Journal of Ultrasound, 9(1), 3–9.

Van Der Windt, D. A. W. M., Van Der Heijden, G. J. M. G., Van Den Berg, S. G. M., Ter Riet, G., De Winter, A. F., & Bouter, L. M. (1999). Ultrasound therapy for musculoskeletal disorders: A systematic review. Pain, 81(3), 257–271.

Wells, P. N. T. (1077). Ultrasonics in Medicine and Biology. Phys. Med. Biol., 22(4), 629-669.

Wessling, K. C., DeVane, D. A., & Hylton, C. R. (1987). Effects of static stretch versus static stretch and ultrasound combined on triceps surae muscle extensibility in healthy women. Phys Ther, 67(5):674-679.

Wilkin, L. D., Merrick, M. A., Kirby, T. E., & Devor, S. T. (2004). Influence of Therapeutic Ultrasound on Skeletal Muscle Regeneration Following Blunt Contusion. International Journal of Sports Medicine, 25(1), 73–77.

Young S. R., & Dyson M. (1990). The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol, 16(3):261-269.

Young, S. R., & Dyson, M. (1990). Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics, 28(3), 175–180.

Zalin, R. J. (1987). The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Experimental Cell Research, 172(2), 265–281.

Published

01/10/2021

How to Cite

SILVA, A. N. G.; OLIVEIRA, J. R. S.; MADUREIRA, Álvaro N. de M.; LIMA, W. A.; SILVA, A. P. S. .; LIMA, V. L. M. Muscle regeneration mechanisms stimulated by ultrasound therapy . Research, Society and Development, [S. l.], v. 10, n. 12, p. e579101221044, 2021. DOI: 10.33448/rsd-v10i12.21044. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21044. Acesso em: 28 apr. 2024.

Issue

Section

Review Article