Occurrence and profile of sensitivity and resistance of bacteria isolated from tracheal aspirates cultures of a University Hospital of the Sertão of Pernambuco

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21550

Keywords:

Bacteria; Infection; Intensive Care Units; Hospitals.

Abstract

Hospital infections are a challenge for public health, given their impact on patient prognosis and hospital costs. The objective of this article was to evaluate the bacterial occurrence and the bacterial profile of tracheal aspirates of patients admitted to the ICU. Retrospective, descriptive and documentary study, having as source spreadsheets available by the Laboratory of Clinical Analysis of the University Hospital. Results Of the 307 reports analyzed in 2017, 142 were positive, and in 2018 out of 319, 213 were positive. The most frequent microorganism in the two years was Acinetobacter baumannii, followed by Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Acinetobacter baumannii showed resistance to several bethalactamics, including meropenem and imipenem and ampicillin sulbactam; sensitive to colistin and tigecycline. The isolates of P. aeruginosa from 2017 and 2018 were resistant to: meropenem, imipenem, ceftazidima, cefepima, ciprofloxacin and levofloxacin. However, for piperacillin tazobactam resistance was observed in the samples obtained in 2018. S. aureus was resistant to clindamycin, sulfamethoxazole trimethoprima and oxacillin; showed sensitivity to linezolid, tigeclicline and vancomycin. K. pneumoniae isolates showed resistance, among other drugs, to imipenem, meropenem, piperacillin tazobactam; on the other hand, amicacin and colistin were sensitive. The observed resistances denote the importance of the rational use of antimicrobials and provide data for the creation of empirical antibiotic therapy protocols for the treatment of patients hospitalized in the Institution.

References

Al-Tawfiq, J. A., & Tambyah, P. A. (2014). Healthcare associated infections (HAI) perspectives. Journal of Infection and Public Health, 7(4), 339–344. https://doi.org/10.1016/j.jiph.2014.04.003

Alp, E., & Damani, N. (2015). Healthcare-associated infections in Intensive Care Units: epidemiology and infection control in low-to-middle income countries. The Journal of Infection in Developing Countries, 9(10), 1040–1045. https://doi.org/10.3855/jidc.6832

Babady, N. E. (2016). Hospital-Associated Infections. Microbiology Spectrum, 4(3). https://doi.org/10.1128/microbiolspec.dmih2-0003-2015

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380

Boev, C., & Kiss, E. (2017). Hospital-Acquired Infections. Critical Care Nursing Clinics of North America, 29(1), 51–65. https://doi.org/10.1016/j.cnc.2016.09.012

Calik Basaran, N., & Ascioglu, S. (2017). Epidemiology and management of healthcare-associated bloodstream infections in non-neutropenic immunosuppressed patients: a review of the literature. Therapeutic Advances in Infectious Disease, 4(6), 171–191. https://doi.org/10.1177/2049936117733394

Canzi, K. R., & Colacite, J. (2016). Frequência de pneumonia associada à ventilação mecânica com base em resultados de culturas quantitativas de secreções traqueais [Review of Frequência de pneumonia associada à ventilação mecânica com base em resultados de culturas quantitativas de secreções traqueais]. RBAC, 48(2), 118–122. http://sbac.org.br/rbac/wp-content/uploads/2016/06/ARTIGO-3_RBAC-48-2-2016-ref.-386.pdf

Cardoso, T., Almeida, M., Friedman, N. D., Aragão, I., Costa-Pereira, A., Sarmento, A. E., & Azevedo, L. (2014). Classification of healthcare-associated infection: a systematic review 10 years after the first proposal. BMC Medicine, 12(1). https://doi.org/10.1186/1741-7015-12-40

Frota, O. P., Ferreira, A. M., Barcelos, L. da S., Watanabe, E., Carvalho, N. C. P., Rigotti, M. A., Frota, O. P., Ferreira, A. M., Barcelos, L. da S., Watanabe, E., Carvalho, N. C. P., & Rigotti, M. A. (2014). Collection of tracheal aspirate: safety and microbiological concordance between two techniques. Revista Da Escola de Enfermagem Da USP, 48(4), 618–624. https://doi.org/10.1590/S0080-623420140000400007

Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 41 Suppl 2, S120-6. https://doi.org/10.1086/428052

Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews. Disease Primers, 4(18033), 18033. https://doi.org/10.1038/nrdp.2018.33

Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9), 1265–1273. https://doi.org/10.1172/jci18535

Mota, F. S. da, Oliveira, H. A. de, & Souto, R. C. F. (2018). Profile and prevalence of antimicrobial resistance of negative-Gram bacteria isolated from intensive care patients. Revista Brasileira de Análises Clínicas, 50(3). https://doi.org/10.21877/2448-3877.201800740

Percival, S. L., Suleman, L., Vuotto, C., & Donelli, G. (2015). Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. Journal of Medical Microbiology, 64(Pt_4), 323–334. https://doi.org/10.1099/jmm.0.000032

Ranzani, O. T., Forte, D. N., Forte, A. C., Mimica, I., & Forte, W. C. N. (2016). The value of antibody-coated bacteria in tracheal aspirates for the diagnosis of ventilator-associated pneumonia: a case-control study. Jornal Brasileiro de Pneumologia, 42(3), 203–210. https://doi.org/10.1590/s1806-37562015000000244

Ribeiro, T. de S., Ribeiro, R. A. A. dos S., Batista, K. S., Ricarte de Aquino, S., & Naue, C. R. (2019). Ocorrência e perfil bacteriano de culturas coletadas em pacientes internados na unidade de terapia intensiva em um hospital terciário. HU Revista, 45(2), 122–133. https://doi.org/10.34019/1982-8047.2019.v45.25933

Seibert, G., Hörner, R., Meneghetti, B., Alves, R., Frasson, N., Forno, D., & Salla, A. (2014). Einstein. 12(3), 282–288. https://doi.org/10.1590/S1679-45082014AO3131

Simões, A. C. A., Miranda, M. M., & Teixeira, C. D. (2017). Resistência a antimicrobianos em CEPAS DE Staphylococcus aureus isoladas da UTI de um hospital achde Coeiro de Itapemirim – ES. Revista Univap, 22(40), 363. https://doi.org/10.18066/revistaunivap.v22i40.864

Suarez, C. J., Kattan, J. N., Guzman, A. M., & Villegas, M. V. (2006). Resistance mechanisms to carabapenems in P. aeuriginosa, Acinetobacter baumannii and Enterobacteriaceae and strategies for prevention and control. Infectio, 10(2), 85–93. Scielo. http://www.scielo.org.co/scielo.php?pid=S0123-93922006000200006&script=sci_abstract&tlng=en

World Health Organization. (2016). Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level. World Health Organization.

Published

24/10/2021

How to Cite

GONÇALVES, G. . R. .; LIMA, R. S. de; SILVA, K. S. B.; OLIVEIRA, K. R. . de; GUIMARÃES, M. D.; NAUE, C. R. Occurrence and profile of sensitivity and resistance of bacteria isolated from tracheal aspirates cultures of a University Hospital of the Sertão of Pernambuco. Research, Society and Development, [S. l.], v. 10, n. 14, p. e23101421550, 2021. DOI: 10.33448/rsd-v10i14.21550. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21550. Acesso em: 24 nov. 2024.

Issue

Section

Health Sciences