Sorption of oils by a commercial non-woven polypropylene sorbent

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22671

Keywords:

Adsorption isotherms; Derramamento de petróleo; Estudo cinético; Kinetic study; Non-woven sorbent; Isotermas de adsorção; Sorvente não-tecido; Oil spill; Reusabilidade.; Reusability

Abstract

Non-woven polypropylene (PP) sorbents are materials that can be used in oil recovery following spills, which are interesting alternatives to remediate contaminated areas. This work aimed to characterize a non-woven sorbent made of PP. The physicochemical characteristics of the material, sorption capacity, kinetics, and adsorption isotherms were evaluated. The physicochemical study included the determination of thickness, density, thermal and chemical properties of the sorbent, and fiber morphology. Sorption tests were performed according to the standard method ASTM 726-12. The kinetic models of pseudo-first and pseudo-second order were tested. The fit of the experimental data to the adsorption isotherms of Langmuir, Freundlich, and Temkin was also carried out. The sorbates used in the tests were diesel, petroleum, and lubricant oil. The sorption capacity of the PP nonwoven blanket relative to diesel, petroleum, and lubricant oil in long-term tests was 5.3, 12.3, and 18.7 g∙g-¹, with increasing values when sorbates were more viscous. The results of the short and long-term tests did not show a statistical difference in the sorption capacity of the blanket. The kinetic study showed that the sorption of the three sorbates followed pseudo-second-order kinetics. The diesel oil presented a better fit to the Langmuir isotherm (R² = 0.998), whereas the petroleum presented an excellent fit to all three isotherms (R² = 0.996-0.999). Regarding sorbent reusability, the sorption capacity stabilized after the second cycle, and the samples whose sorbate removal was carried out by centrifugation have presented and maintained the highest sorption capacities.

References

Abdullah, M. A., Rahmah, A. R., & Man, Z. (2010). Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. Journal of Hazardous Materials, 177:683-691. DOI: 10.1016/j.jhazmat.2009.12.085

Aghajanloo, K., & Pirooz, M.D. (2011). The Simulation of the oil weathering processes in marine environment. International Conference on Environmental and Computer Science, 19:29-34.

Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2005). Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies. Water Research, 32:2483-2494.

Alihosseini, A., Taghikhani, V., Safekordi, A. A., & Bastani, D. (2010). Equilibrium sorption of crude oil by expanded perlite using different adsorption isotherms at 298.15 K. International Journal of Environmental Science and Technology, 7:591-598.

American Society of Testing and Materials (2012) F726-12: Standard test methods for sorbent performance of adsorbents. ASTM, West Conshohocken, USA.

Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50:1340-1346.

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Hindawi Journal of Chemistry, 2017:3039817. DOI: 10.1155/2017/3039817

Bansal, S., Arnim, V., Stegmaier, T., & Planck, H. (2011). Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance. Journal of Hazardous Materials, 190:45-50. DOI: 10.1016/j.jhazmat.2011.01.134

Bayona JM, Domínguez C, Albaigés J (2015) Analytical developments for oil spill fingerprinting. Trends in Environmental Analytical Chemistry, 5:26-34. DOI: 10.1016/j.teac.2015.01.004

Branpud, J., & Immergut, E. H. (1989). Polymer Handbook. Wiley Interscience, New York.

Callister, W. D., & Rethwisch, D. G. (2010). Materials Science and Engineering: an introduction. Wiley, New York.

Canciam, C. A. (2012). Estimativa da energia de ativação de fluxo dos óleos lubrificantes SAE 30, SAE 40 e SAE 50. Revista da Universidade Vale do Rio Verde, 10:202-210.

Canzano, S., Iovino, P., Leone, V., Salvestrini, S., & Capasso, S. (2012). Use and Misuse of Sorption Kinetic Data: A Common Mistake that Should be Avoided. Adsorption Science and Technology, 30:217-225.

Choi, H., & Cloud, R. M. (1992). Natural Sorbents in oil spill cleanup. Environmental Science and Technology, 26:772-776.

Companhia Ambiental do Estado de São Paulo. (2014). Gerenciamento de riscos. CETESB, São Paulo, Brazil.

D’Andrea, M. D., Facro, M. D., & Reddy, G. K. (2013). Health consequences among subjects involved in Gulf oil spill clean-up activities. American Journal of Medicine, 126:966-974. DOI: 10.1016/j.amjmed.2013.05.014

Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: a critical review and comparative analysis. American Journal of Environmental Science, 7:423-440. DOI: 10.3844/ajessp.2011.423.440

Fernando, H. J. S. (2013). Handbook of environmental fluid dynamics. CRC Press, Boca Raton, USA.

Foo, K. Y., & Hameed, B. H. (2013). Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresource Technology, 130:696-702.

Hasan, S. W., Ghannam, M. T., & Esmail, N. (2010). Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel, 89:1095-1100. DOI: 10.1016/j.fuel.2009.12.021

Hu, Y., Liu, X., Zou, J., Gu, T., Chai, W., & Li, H. (2013). Graphite/isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids. Applied Materials & Interfaces, 5:7737-7742.

Ilgen, O. (2014) Adsorption of oleic acid from sunflower oil on Amberlyst A26 (OH). Fuel Processing Technology, 118:69-74.

Inagaki, M., Kawahara, A., & Konno, H. (2002). Sorption and recovery of heavy oils using carbonized fir fibers and recycling. Carbon, 40:105-111.

International Maritime Organization. (2005). Manual on oil pollution. IMO, London, UK.

Jahnson, P. (2013). Modern Gas Turbine Systems - High Efficiency, Low Emission, Fuel Flexible Power Generation. Sawston, Woodhead Publishing.

Johnson, R. F., Manjrekar, T. G., & Halligan, J. E. (1973). Removal of oil from water surfaces by sorption on unstructured fibers. Environmental Science and Technology, 7:439-443. DOI: 10.1021/es60077a003

Kingston, P. F. (2002). Long-term environmental impact of oil spills. Spill Science & Technology Bulletin, 7:53-61.

Lee, B. G., Han, J. S., & Rowell, R. M. (1999). Oil sorption by lignocellulosic fibers. In: Lee, B. G., Han, J. S., & Rowell, R. M. (Eds.). Kenaf properties, processing and products. Mississippi State: Mississippi State University, USA.

Li, H., Wu, W., Bubakir, M. M., Chen, H., Zhong, X., Liu, Z., Ding, Y., & Yang, W. (2014) Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. Journal of Applied Polymer Science, 131:40080-40089.

Líbano, E. V. D. G., Visconte, L. L. Y., & Pacheco, E. B. A. V. (2012). Propriedades térmicas de compósitos de polipropileno e bentonita organofílica. Polímeros, 22:430-435. doi: 10.1590/S0104-14282012005000063

Lim, T. T., & Huang, X. (2007). Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere, 66:955-963. DOI: 10.1016/j.chemosphere.2006.05.062

Lin, J., Shang, Y., Ding, B., Yang, J., Yu, J., & Al-Deyab, S. S. (2012). Nanoporous polystyrene fibers for oil spills cleanup. Marine Pollution Bulletin, 64:347-352. DOI: 10.1016/j.marpolbul.2011.11.002

Nurhadi, B., & Roos, Y. H. (2016). Dynamic water sorption for the study of amorphous content of vacuum-dried honey powder. Powder Technology, 301:981-988. DOI: 10.1016/j.powtec.2016.07.055

Peng, D., Lan, Z., Guo, C., Yang, C., & Dang, Z. (2013). Application of cellulase for the modification of corn stalk: leading to oil sorption. Bioresource Technology, 137:414-418. DOI: 10.1016/j.biortech.2013.03.178

Pereira, T. M. C., Domingos, E., Castro, E. V. R., Romão, W., Sena, G. L., & Sena, D. R. (2014). Efeito dos solventes orgânicos sobre o comportamento físico-químico do polietileno de alta densidade (PEAD) e polipropileno (PP). Polímeros, 24:300-306. DOI: 10.4322/polimeros.2014.045

Qi, X., Jia, Z., Yang, Y., & Liu, H. (2011). Sorption capacity of new type oil adsorption felt for potential application to ocean oil spill. Procedia Environmental Sciences, 10:849-853. DOI: 10.1016/j.proenv.2011.09.137

Radetic, M. M., Jocic, D. M., Jovanic, P. M., Petrovic, Z. L. J., & Thomas, H. F. (2003). Recycled wool-based nonwoven material as an oil sorbent. Environmental Science and Technology, 37:1008-1012.

Rana, C., Pramanik, S., Martin, M., De Wit, A. & Mishra, M. (2019). Influence of Langmuir adsorption and viscous fingering on transport of finite size samples in porous media. Physical Review Fluids, 4(10):104001. DOI: 10.1103/PhysRevFluids.4.104001

Rengazamy, R. S., Das, D., & Karan, C. P. (2011). Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. Journal of Hazardous Materials, 186:526-532. DOI: 10.1016/j.jhazmat.2010.11.031

Rosa, A. H., Fraceto, L. F., & Moshini-Carlos, V. (2012). Meio ambiente e sustentabilidade. Bookman, Porto Alegre, Brazil.

Rosa, S. M. L. (2007). Estudo das propriedades de compósitos de polipropileno com casca de arroz. Master’s dissertation, Universidade Federal do Rio Grande Sul, Porto Alegre, Brazil.

Saruchi, & Kumar, V. S. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12:316-329. DOI: 10.1016/j.arabjc.2016.11.009

Shackelford, J.F. (2000). Introduction to materials science for engineers. Prentice Hall, New Jersey, USA.

Shaw, D. J. (1975). Introdução à química dos colóides e de superfícies. 1st edn. Editora da Universidade de São Paulo, São Paulo, Brazil.

Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300:254-263. DOI: 10.1016/j.cej.2016.04.079

Simonovic, B. R., Arandelovic, D., Jovanovic, M., Kovacevic, B., Pezo, L., & Jovanovic, A. (2009). Removal of mineral oil and wastewater pollutants using hard coal. Chemical Industry & Chemical Engineering Quarterly, 15:57-62.

Singh, V. (2013). Crude oil sorption by raw cotton. Industrial & Engineering Chemistry Research, 52:6277-6281. DOI: 10.1021/ie4005942

Sokker, H. H., El-Sawy, N. M., Hassan, M. A., & El-Anadouli, B. E. (2011). Adsorption of crude oil from aqueous solution by hydrogel of chitosan-based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials, 190:359-365. DOI: 10.1016/j.jhazmat.2011.03.055.

Souza, E. S., & Triguis, J. A. (2005). Degradação do petróleo em derrames no mar – intemperismo x biorremediação. Proceedings of the III Congresso Brasileiro de P&D em Petróleo e Gás, Salvador, Brazil.

Standard Methods for the Examination of Water and Wastewater. (2012). Oil and grease. APHA, Washington, USA.

Tanobe, V. (2007). Desenvolvimento de sorventes à base de espumas de poliuretanos flexíveis para para o setor do petróleo. PhD thesis, Universidade Federal do Paraná, Curitiba, Brazil.

Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E., & Anastopoulos, G. (2001). Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination, 140:259-264. DOI: 10.1016/S0011-9164(01)00375-7

Tokumoto, S. (2003). Deformação plástica do polipropileno isotático: aspectos do mecanismo, propriedades e morfologia. PhD thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Trombetta, E. (2010). Utilização de fibra natural de pinus (serragem) como reforço em componentes automotivos compostos de polipropileno. Master’s thesis, Universidade Federal do Paraná, Curitiba, Brazil.

Wahi, R., Chua, L. A., Choong, T. S. Y., Ngaini, Z., & Nourouzi, M. M. (2013). Oil removal from aqueous state by natural fibrous sorbent: an overview. Separation and Purification Technology, 113:51-63. DOI: 10.1016/j.seppur.2013.04.015

Wei, Q. F., Mather, R. R., Fotheringham, A. F., & Yang, R. D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Marine Pollution Bulletin, 46:780-783. DOI: 10.1016/S0025-326X(03)00042-0

Wexler, P. (2005). Encyclopedia of Toxicology. 2nd ed. Cambridge, Academic Press, UK.

Wu, D., Fang, L., Qin, Y., Wu, W., Mao, C., & Zhu, H. (2014). Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Marine Pollution Bulletin, 84:263-267. DOI: 10.1016/j.marpolbul.2014.05.005

Wu, J., Wang, N., Wang, L., Dong, H., Zhao, Y., & Jiang, L. (2012). Electrospun porous structure fibrous film with high oil adsorption capacity. Applied Materials & Interfaces, 4(6):3207-3212. DOI: 10.1021/am300544d

Xu, T., Wang, Y., Xu, Y., Cao, W., Liu, C., & Shen, C. (2014). Crystallization behavior and nucleation analysis of isotactic polypropylene with a multiamide nucleating agent. Polymer Testing, 36:62-68.

Yang, S. Z., Jin, H. J., Wei, Z., He, R. X., Ji, Y. J., Li, X. M., & Yu, S. P. (2009). Bioremediation of oil spill in cold environments: a review. Pedosphere, 19:371-381. DOI: 10.1016/S1002-0160(09)60128-4

Downloads

Published

14/11/2021

How to Cite

ZARO, M.; SILVESTRE, W. P.; FEDRIGO, J. G. .; ZENI, M.; BALDASSO, C. Sorption of oils by a commercial non-woven polypropylene sorbent. Research, Society and Development, [S. l.], v. 10, n. 14, p. e554101422671, 2021. DOI: 10.33448/rsd-v10i14.22671. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22671. Acesso em: 4 dec. 2024.

Issue

Section

Engineerings