The impact of biofilm formation on implantable cardiac devices
DOI:
https://doi.org/10.33448/rsd-v10i16.23415Keywords:
Biofilms; Cardiac Resynchronization Therapy Devices; Cross infection.Abstract
Introduction: biofilm is a culture of sessile bacteria, isolated from the external world, capable of internal communication and signalization, which allow for the development of phenotypic changes to adapt to hostile environments. Given its easy pathogenic dissemination, biofilms can develop in prosthetics and implantable medical devices, forming focal nosocomial infections. Objective: to comprehend biofilm formation mechanisms in implantable cardiac devices in an intra-hospital environment, as well as the treatment and prophylactic measures to treat this condition. Materials and methods: descriptive and observational exploratory study based on a literary review on biofilm formation, its consequences in a hospital environment, and infections caused by proliferation on implantable cardiac devices. In total, 28 articles were selected using the following descriptors: ((nosocomial) AND (cardiac)) AND (devices). Results: biofilm grows in an uneven form, being influenced by strain and environment. It has a high virulence when it comes to growing on implantable cardiac devices considering its ability to adhere to biotic and abiotic surfaces. Immunosuppression and the lack of surgical sterilization are factors that can contribute to complications associated with the use of these devices, such as infectious endocarditis. Conclusion: biofilm, due to its pathogenicity and virulence, is a serious though rare complication in patients that use implantable devices. There is evidence that contamination occurs mainly in surgical environments, making it necessary the application of more rigorous sterilization techniques.
References
Al-Shamiri, M. M., Zhang, S., Mi, P., Liu, Y., Xun, M., Yang, E., Ai, L., Han, L., & Chen, Y. (2021). Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microbial Pathogenesis, 155, 104922. https://doi.org/10.1016/j.micpath.2021.104922
Araújo, E. A., Andrade, N. J. de, Carvalho, A. F. de, Ramos, A. M., Silva, C. A. de S., & Silva, L. H. M. da. (2010). Aspectos coloidais da adesão de micro-organismos. Química Nova, 33(9), 1940–1948. https://doi.org/10.1590/S0100-40422010000900022
Berkefeld, A., Berger, F. K., Gärtner, B. C., Wantia, N., Prinzing, A., Laugwitz, K.-L., Busch, D. H., & Rothe, K. (2020). Clostridioides (Clostridium) difficile Pacemaker Infection. Open Forum Infectious Diseases, 7(12). https://doi.org/10.1093/ofid/ofaa487
Brackman, G., & Coenye, T. (2014). Quorum Sensing Inhibitors as Anti-Biofilm Agents. Current Pharmaceutical Design, 21(1), 5–11. https://doi.org/10.2174/1381612820666140905114627
Bruna, C. Q. de M., Almeida, A. G. C. dos S., & Graziano, K. U. (2019). Avaliação da contaminação microbiana em fitas e resinas identificadoras de instrumental cirúrgico. Revista SOBECC, 24(1), 16. https://doi.org/10.5327/10.5327/Z1414-4425201900010004
Haunreiter, D. V., Boumasmoud, M., Häffner, N., Wipfli, D., Leimer, N., Rachmühl, C., Kühnert, D., Achermann, Y., Zbinden, R., Benussi, S., Vulin, C., & Zinkernagel, A. S. (2019). In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nature Communications, 10(1), 1149. https://doi.org/10.1038/s41467-019-09053-9
DeSimone, D. C., & DeSimone, C. (2020). Editorial commentary: Intravenous drug abuse and infectious endocarditis. Trends in Cardiovascular Medicine, 30(8), 498–499. https://doi.org/10.1016/j.tcm.2019.12.001
Devine, A. (2014). Hardware for the Heart: The Increasing Impact of Pacemakers, ICDs, and LVADs. MD Edge Emergency Medicine, 46(2), 56–75.
Hall, C. W., & Mah, T.-F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301. https://doi.org/10.1093/femsre/fux010
Hannachi, N., Habib, G., & Camoin-Jau, L. (2019). Aspirin Effect on Staphylococcus aureus—Platelet Interactions During Infectious Endocarditis. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00217
Henriques, A. F. F. M., Vasconcelos, C., & Cerca, N. (2013). A importância dos biofilmes nas infecções nosocomiais: o estado da arte. Arquivos de Medicina, 27–36.
Hentzer, M., & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. Journal of Clinical Investigation, 112(9), 1300–1307. https://doi.org/10.1172/JCI20074
Holland, T. L., Baddour, L. M., Bayer, A. S., Hoen, B., Miro, J. M., & Fowler, V. G. (2016). Infective endocarditis. Nature Reviews Disease Primers, 2(1), 16059. https://doi.org/10.1038/nrdp.2016.59
Ma, Y., Chen, M., Jones, J. E., Ritts, A. C., Yu, Q., & Sun, H. (2012). Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating. Antimicrobial Agents and Chemotherapy, 56(11), 5923–5937. https://doi.org/10.1128/AAC.01739-12
Marks, L. R., Reddinger, R. M., & Hakansson, A. P. (2014). Biofilm Formation Enhances Fomite Survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infection and Immunity, 82(3), 1141–1146. https://doi.org/10.1128/IAI.01310-13
Moraes, M. N. Silveira, W. C. D., Teixeira, L. L. E. M., & Araújo, I. D. (2013). Mechanisms of bacterial adhesion to biomaterials. Revista Médica de Minas Gerais, 23(1), 99-104.
Nascimento, I. R., Lima de Sena, T., Fernandes dos Santos Castro, F., Pereira Correia de Souza, P., & Nomiyama Figueiredo, F. (2018). Biofilmes bacterianos: colonização e identificação de micro-organismos causadores de infecção em cateter venoso central. Programa de Iniciação Científica - PIC/UniCEUB - Relatórios de Pesquisa, 2. https://doi.org/10.5102/pic.n2.2016.5586
Nguemeleu, E. T., Boivin, S., Robins, S., Sia, D., Kilpatrick, K., Brousseau, S., Dubreuil, B., Larouche, C., & Parisien, N. (2020). Development and validation of a time and motion guide to assess the costs of prevention and control interventions for nosocomial infections: A Delphi method among experts. PLOS ONE, 15(11), e0242212. https://doi.org/10.1371/journal.pone.0242212
Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6
Salmeri, M., Sorbello, M. G., Mastrojeni, S., Santanocita, A., Milazzo, M., di Stefano, G., Scalia, M., Addamo, A., Toscano, M. A., Stefani, S., & Mezzatesta, M. L. (2016). Infections of cardiovascular implantable electronic devices: 14 years of experience in an Italian hospital. Le Infezioni in Medicina, 2, 131–136.
Santos, A. P. A., Watanabe, E., & Andrade, D. de. (2011). Biofilme em marca-passo artificial: ficção ou realidade? Arquivos Brasileiros de Cardiologia, 97(5), e113–e120. https://doi.org/10.1590/S0066-782X2011001400018
Sousa, Á. F. L. de, Marques, D. M., Monteiro, R. M., Queiroz, A. A. F. L., Andrade, D., & Watanabe, E. (2017). Prevenção da formação de biofilmes em marcapassos artificiais: é viável? Acta Paulista de Enfermagem, 30(6), 644–650. https://doi.org/10.1590/1982-0194201700085
Stewart, P. S., Franklin, M. J., Williamson, K. S., Folsom, J. P., Boegli, L., & James, G. A. (2015). Contribution of Stress Responses to Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 59(7), 3838–3847. https://doi.org/10.1128/AAC.00433-15
Sued, B. P. R., Pereira, P. M. A., Faria, Y. V., Ramos, J. N., Binatti, V. B., Santos, K. R. N. dos, Seabra, S. H., Hirata Júnior, R., Vieira, V. V., Mattos-Guaraldi, A. L., & Pereira, J. A. A. (2017). Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Memórias Do Instituto Oswaldo Cruz, 112(3), 188–195. https://doi.org/10.1590/0074-02760160381
Tarakji, K. G. (2019). Cardiovascular Implantable Electronic Device Infection. JACC: Clinical Electrophysiology, 5(9), 1081–1083. https://doi.org/10.1016/j.jacep.2019.05.026
Wang, S., Kang, O.-H., & Kwon, D.-Y. (2021). Trans-Cinnamaldehyde Exhibits Synergy with Conventional Antibiotics against Methicillin-Resistant Staphylococcus aureus. International Journal of Molecular Sciences, 22(5), 2752. https://doi.org/10.3390/ijms22052752
Wheeler, K. M., Cárcamo-Oyarce, G., Turner, B. S., Dellos-Nolan, S., Co, J. Y., Lehoux, S., Cummings, R. D., Wozniak, D. J., & Ribbeck, K. (2019). Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nature Microbiology, 4(12), 2146–2154. https://doi.org/10.1038/s41564-019-0581-8
Xu, Y., Jones, J. E., Yu, H., Yu, Q., Christensen, G. D., Chen, M., & Sun, H. (2015). Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm. Antimicrobial Agents and Chemotherapy, 59(12), 7308–7315. https://doi.org/10.1128/AAC.01944-15
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Nicole Abdullah; Oona Salomão Erdmann; Beatriz Essenfelder Borges
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.