Rainfall interception mapping in the Alto Juruá hydrographic basin, Acre
DOI:
https://doi.org/10.33448/rsd-v11i1.24343Keywords:
Foliar Area; Amazon; Gash Model.Abstract
Rainwater interception losses are often neglected due to measurement difficulties and great spatial and temporal variability. Losses can be significant and therefore have a severe impact on the water balance of a watershed. The present work had as objective to obtain the pluvial interception in the hydrographic basin of the Alto Juruá (BHAJ), through the Gash model, based on remote sensing data. The platform for data processing was the Google Earth Engine, which allowed the assessment and comparison of rainfall variables, normalized difference vegetation index and leaf area index (LAI), on a monthly and annual scale, in the period of 2003 to 2016. Thus, it was possible to observe that the interception has a strong relationship with LAI and vegetation cover, recording an annual average of 11.2% of rain intercept by the forest within the BHAJ, with its highest percentages in the rainiest periods.
References
Alvares, C. A., Stape, J. L., SentelhaS, P. C., Gonçalves, J. L. de M., & Sparovek, G. Koppen’s Climate Classification Map For Brazil. Meteorologische Zeitschrift, 22(6), 711–728, 2014.
Alves, P. L., Formiga, K. T. M., & Traldi, M. A. B. (2018). Interferência de Espécies Arbóreas na Interceptação das Águas Pluviais Urbanas. RBCIAMB, (47), 89- 100.
Araujo, E. S. de, Almeida, M. P. de, Leite, K, N., Silva, J. R. dos S., Araújo, E. A. de, & Sousa, G. G. de. (2020). Climatic Characterization and Temporal Analysis of Rainfall in the Municipality of Cruzeiro do Sul - AC, Brazil. Revista Brasileira de Meteorologia, 35(4), 577- 584.
Arcova, F. C. S., Cicco, V. de, Rocha, P. A. B. (2003). Precipitação Efetiva E Interceptação Das Chuvas Por Floresta De Mata Atlântica Em Uma Microbacia Experimental Em Cunha - São Paulo. R. Árvore, Viçosa-MG, 27(2),.257-262.
Auguie, B. gridExtra: Miscellaneous Functions for ``Grid'' Graphics, 2017. https://cran.r-project.org/web/packages/gridExtra/gridExtra.pdf.
Balbinot, R., Oliveira, N. K. de., Vanzetto, S. C., Pedroso, K., & Valerio, A. F. (2008). O papel da floresta no ciclo hidrológico em bacias hidrográficas. Ambiência. 4(1), 131-149
Brasil, J. B., Palácio, H. A. de Q., Araújo Neto, J. R. de, Ribeiro Filho, J. C., Andrade, E. M. de. (2017). Características das Chuvas e Interceptação Vegetal no Bioma Caatinga. Irriga. 22(3), 560-574.
Cuartas, L. A., Tomasella, J., Nobre, A. D., & Hodnett, M. G. (2007). Interception Water-Partitioning Dynamics for a Pristine Rainforest in Central Amazonia: Marked Differences Between Normal and Dry Years. Agricultural and Forest Meteorology. 145, 69-83.
Cui, Y., & Jia, L. (2014). A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale. Water. 6, p. 993-1012.
Dijk, A.I.J.M., Bruijnzeel, L.A. (2001). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2 - Model validation for a tropical upland mixed cropping system. Journal of Hydrology, Amsterdam, 247, 239-62
Freitas, J. P. O., Dias, H. C. T., Silva, E., &Tonello, K. C. (2018). Precipitação Líquida em Fragmento Florestal Semidecíduo na Cidade de Viçosa, MG. Revista Árvore. 40(5), 793-801.
Giglio, J. N., & Kobiyama, M. (2013). Interceptação da Chuva: Uma Revisão com Ênfase no Monitoramento em Florestas Brasileiras. Revista Brasileira de Recursos Hídricos. 18(2), 297- 317.
Horton, R. E. (2019). Rainfall Interception. Monthly Weather Review, 26(653), 25–27.
Jong, S. M., & Jetten, V. G. (2007). Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis. International Journal of Geographical Information Science. 21(5), 529–545.
José, J. V., Pereira, L. B., Leite, H. M. F., Santos, L. da C., Barros, T. H. da S., leite, K. N. (2020). Métodos empíricos de estimativa da evapotranspiração em clima tropical equatorial. Research Society and Development, 9, e4099108563.
Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 10, 2-15.
Lima, W. de P. (2008). Hidrologia Florestal Aplicada ao Manejo de Bacias Hidrográficas. Universidade de São Paulo- USP
López, J. F. (2016). Interceptação de Águas Pluviais em um Fragmento de Mata Atlântica da Reserva Biológica de Duas Bocas, Cariacica (ES) Brasil. Tese (Mestrado em Geografia) Universidade Federal Do Espírito Santo Centro De Ciências Humanas e Naturais Programa De Pós-Graduação Em Geografia Da UFES, Vitoria, p. 143.
Marengo, J. A., & Souza jr, C. (2018). Mudanças Climáticas: impactos e cenários para a Amazônia. O que o ISP pode fazer por...? São Paulo. p. 1-33.
O'connor, J. et al. The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrology and Earth System Sciences Discussions, p. 1-22, 2019.
Oerlemans, R.R.R., & Vink, R. P. (2010). Rainfall Interception Experiments and Interception mapping using Remote Sensing. (Tese de Mestrado) Faculty of Geosciences Department of Physical Geography Utrecht University, p. 108.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2021. https://www.R-project.org>.
Sá, J. H., Chaffe, P. L., & Oliveira, D. Y. (2015). Análise comparativa dos modelos de Gash e de Rutter para a estimativa da interceptação por Floresta Ombrófila Mista. Revista Brasileira de Recursos Hídricos, 20(4), 1008- 1018.
Silva D. et al. (2005). Interações entre nuvens, chuvas e a biosfera na Amazônia. Acta Amazônica, 2(35), 215–222.
Sousa, J. W., & Costa, D. B. Ajuste de distribuições de probabilidades à série 1970-2010 de precipitação máxima anual de Rio Branco, Acre. Revista Scientia Naturalis, 2(1), 177-187.
Tobón, C., Bouten, W., Sevink, J. (2000). Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four Forest ecosystems in western Amazonia. J. Hydrol. 37, 40–57
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Xião, Q., & Mcpherson, E. G. (2016). Surface water storage capacity of twenty tree species in Davis, California. Journal of Environmental Quality, 45(1), 188-198.
Zambrano-Bigiarini, M. hydroGOF: Goodness-of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series, 2020. https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cassia Fernanda de Souza Farias; Jefferson Vieira José; Kelly Nascimento Leite; Moisés Damasceno Souza; Marcos Antonio Correa Matos Amaral; Sonaira Souza da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.