Depression among Brazilian youth: an investigation based on subgroup discovery

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24547

Keywords:

Depression; Data Mining; Subgroup discovery.

Abstract

This paper investigated groups of socioeconomic and lifestyle characteristics related to depression among Brazilian youth using a data mining-based approach. Depression is the result of the complex interaction between a large number of environmental and genetic factors. However, environmental factors contributing to depression is still an open challenge. A recent and voluminous source of data with the potential to investigate these environmental factors is the National Health Survey (PNS), a study carried out periodically by the Brazilian Institute of Geography and Statistics (IBGE) which aims to produce data on the health situation and lifestyles of the Brazilian population. In this sense, we use Subgroup Discovery on the PNS in order to find sets of characteristics that make a target group stand out from others (e.g. people with depression from others).

References

Atzmueller, M. (2015). Subgroup discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(1), 35-49.

Azuelo, N. C. S., de Souza Filho, Z. A., das Neves, A. L. M., de Oliveira Ferreira, B., de Lima Oliveira, D., & Tavares, N. K. C. (2020). Prevalência de depressão em pessoas que vivenciaram violência por parceiro íntimo: revisão sistemática com meta-análise. Research, Society and Development, 9(8), e84985094-e84985094.

Barger, S. D., Messerli-Bürgy, N., & Barth, J. (2014). Social relationship correlates of major depressive disorder and depressive symptoms in Switzerland: nationally representative cross sectional study. BMC public health, 14(1), 1-10.

Brito, I. (2011). Ansiedade e depressão na adolescência. Revista Portuguesa de Medicina Geral e Familiar, 27(2), 208-14.

Carmona, C. J., González, P., del Jesus, M. J., Navío-Acosta, M., & Jiménez-Trevino, L. (2011). Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Computing, 15(12), 2435-2448.

Carvalho, V. P. D. S. (2016). Análise da relação entre o estilo de vida da população economicamente ativa e a prevalência da depressão (Master's thesis, Universidade Federal de Pernambuco).

Daimi, K., & Banitaan, S. (2014). Using data mining to predict possible future depression cases. International Journal of Public Health Science (IJPHS), 3(4), 231-240.

da Rocha, A. C. B., Myva, L. M. M., & de Almeida, S. G. (2020). O papel da alimentação no tratamento do transtorno de ansiedade e depressão. Research, Society and Development, 9(9), e724997890-e724997890.

Gonçalves, C., Ferreira, D., Neto, C., Abelha, A., & Machado, J. (2020). Prediction of Mental Illness Associated with Unemployment Using Data Mining. Procedia Computer Science, 177, 556-561.

Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2019). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227-245.

Herrera, F., Carmona, C. J., González, P., & Del Jesus, M. J. (2011). An overview on subgroup discovery: foundations and applications. Knowledge and information systems, 29(3), 495-525.

Hullam, G., Antal, P., Petschner, P., Gonda, X., Bagdy, G., Deakin, B., & Juhasz, G. (2019). The UKB envirome of depression: From interactions to synergistic effects. Scientific reports, 9(1), 1-19.

IBGE (2021) Pesquisa Nacional da Saúde (PNS) O que é. Recuperado em novembro, 26, 2021, em https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=$t=o-que-e

Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. R. M., Wang, H., & Ulhaq, A. (2018). Depression detection from social network data using machine learning techniques. Health information science and systems, 6(1), 1-12.

Justo, L. P., & Calil, H. M. (2006). Depressão: o mesmo acometimento para homens e mulheres?. Archives of Clinical Psychiatry (São Paulo), 33, 74-79.

Lavrač, N., Flach, P., & Zupan, B. (1999, June). Rule evaluation measures: A unifying view. In International Conference on Inductive Logic Programming (pp. 174-185). Springer, Berlin, Heidelberg.

Lucas, T., Vimieiro, R., & Ludermir, T. (2018, July). SSDP+: A diverse and more informative subgroup discovery approach for high dimensional data. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

OMS (2017) Depression and Other Common Mental Disorders.. Recuperado em novembro, 30, 2021 em https://www.who.int/publications/i/item/depression-global-health-estimates

Pasini, A. L. W., da Silveira, F. L., da Silveira, G. B., Busatto, J. H., Pinheiro, J. M., Leal, T. G., ... & Carlesso, J. P. P. (2020). Suicídio e depressão na adolescência: fatores de risco e estratégias de prevenção. Research, Society and Development, 9(4), e36942767-e36942767.

Tufféry, S. (2011). Data mining and statistics for decision making. John Wiley & Sons.

Wrobel, S. (1997, June). An algorithm for multi-relational discovery of subgroups. In European symposium on principles of data mining and knowledge discovery (pp. 78-87). Springer, Berlin, Heidelberg.

Published

03/01/2022

How to Cite

AZEVEDO, F. C. de M. .; LUCAS, T. D. P. . Depression among Brazilian youth: an investigation based on subgroup discovery. Research, Society and Development, [S. l.], v. 11, n. 1, p. e10511124547, 2022. DOI: 10.33448/rsd-v11i1.24547. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24547. Acesso em: 26 nov. 2024.

Issue

Section

Exact and Earth Sciences