Divergencia genética en especies e híbridos interespecíficos de Physalis basados en caracteres morfoagronómicos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25464

Palabras clave:

Análisis multivariado; Fitomejoramiento; Diversidad genética; Similitud; Similitud genética.

Resumen

Physalis L. es uno de los géneros más importantes de la familia de las solanáceas, que contiene 120 especies identificadas botanicamente. Las especies de Physalis presentan una gran variedad genética, debido al elevado número de especies botánicamente identificadas, lo que garantiza características peculiares de interés económico. A pesar del conocimiento de estas características, poco se ha hecho por la mejora genética de este pequeño fruto. Para iniciar el mejoramiento es necesario realizar el análisis de diversidad genética en bancos de germoplasma. Así, el objetivo fue explorar parámetros morfoagronómicos de siete especies y veintinueve híbridos interespecíficos de Physalis, con el objetivo de contribuir a los programas de mejoramiento genético. Se utilizaron siete especies: Physalis angulata, Physalis ixocarpa, Physalis pruinosa, Physalis peruviana, Physalis pubescens, Physalis mínima y Physalis daturaefolia y 29 híbridos interespecíficos. Para la caracterización morfoagronómica se utilizó una lista de 42 descriptores, con 22 variables cuantitativas y 20 cualitativas. Utilizando el agrupamiento jerárquico de Ward basado en la distancia de Mahalanobis, observamos la formación de cinco grupos con parientes cercanos en relación a los datos cualitativos. El método de Mojena (1977) indicó la formación de cinco grupos distintos. El análisis de componentes principales (PCA) explicó el 63,01% de la variación total entre las siete especies y los 29 híbridos de Physalis a través de los dos primeros componentes principales (PC1 y PC2). Con base en los Caracteres Explotado, se diferenciaron cinco grupos cuantitativos y cualitativos distintos. Los híbridos de Physalis fueron superiores para la mayoría de las variables cuantitativas.

Citas

Abdel, G. A. H., Neumann, K., Wabila, C., Sharma, R., Dhanagond, S., Owais, S. J., Börner, A., Graner, A., & Kilian, B. (2015). Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions. Genetic Resources and Crop Evolution, 62(2), 275–292.

Abreu, F. B. (2005). Herança da resistência a Phytophthora infestans, de características de frutos e seleção de genótipos resistentes na geração F5 de cruzamento interespecífico em tomateiro.

Abreu, F. B., Leal, N. R., Rodrigues, R., Amaral Júnior, A. T. do, & da Silva, D. J. (2004). Divergência genética entre acessos de feijão-de-vagem de hábito de crescimento indeterminado. Horticultura Brasileira, (22), 547–552.

Aliero, A. A., & Usman, H. (2016). Leaves of Ground Cherry (Physalis angulata L.) May Be Suitable in Alleviating Micronutrient Deficiency. Food Science and Technology, 4(5): 89-94.

Allem, A. C. (2002). The origins and taxonomy of cassava. Cassava: biology, production and utilization, 1, 16.

Alves, R. M. (2002). Caracterização genética de populações de cupuaçuzeiro, Theobroma grandiflorum (Willd. Ex. Spreng.) Schum., por marcadores microssatélites e descritores botânico-agronômicos. Universidade de São Paulo.

Araujo, F. L. (2012). Estudo genético e citogenético de duas espécies do gênero Physalis (Solanaceae).

Azeez, S., & FALUYI, J. (2018). Hybridization in Four Nigerian Physalis (Linn.) Species. Notulae Scientia Biologicae, 10(2):205-210.

Balkaya, A., Özbakir, M., & Kurtar, E. S. (2010). The phenotypic diversity and fruit characterization of winter squash (Cucurbita maxima) populations from the Black Sea Region of Turkey. African Journal of Biotechnology, 9(2).

Benito-Bautista, P., Arellanes-Juárez, N., & Pérez-Flores, M. E. (2016). Color y estado de madurez del fruto de tomate de cáscara. Agronomía Mesoamericana, 27(1), 115–130.

Biswas, M. K., Nath, U. K., Howlader, J., Bagchi, M., Natarajan, S., Kayum, M. A., Kim, H.T., Park, J.-I., Kang, J. G., & Nou, I.S. (2018). Exploration and exploitation of novel SSR markers for candidate transcription factor genes in Lilium species. Genes, 9(2), 97.

Bogotá, C. C. (2011). Producción de plantas genéticamente puras de uchuva physalis peruviana.

Bonilla, B. M. L., Piedrahíta, E. K., Posso Terranova, A. M., Vásquez, A. H. D., & Muñoz F. J. E. (2008). Caracterizacion morfológica de 24 accesiones de uchuva del banco de germoplasma de la Universidad Nacional de Colombia Sede Palmira. Acta Agronómica, 57(2), 101–108.

Borges, R. M. E., Resende, G. M., Lima, M. A. C., Dias, R. de C. S., Lubarino, P. C. C., Oliveira, R. C. S., & Gonçalves, N. P. S. (2011). Phenotypic variability among pumpkin accessions in the Brazilian semiarid. Horticultura Brasileira, 29, 461–464.

Carmona, P. A., Peixoto, J. R., Amaro, G. B., Mendonça, M. A., Carmona, P. A., Peixoto, J. R., Amaro, G. B., & Mendonça, M. A. (2015). Genetic divergence of sweet potato accessions based on morpho-agronomic descriptors of the roots. Horticultura Brasileira, 33(2), 241–250.

Cely, J. A. B., Rodríguez, F. E., Almario, C. G., & Meneses, L. S. B. (2015). Variabilidade genética de parentales y Poblaciones f1 inter e intraespecíficas de Physalis peruviana L. Y P. Revista Brasileira de Fruticultura, 37, 179–192.

Chacón, J., Madriñán, S., Debouck, D., Rodriguez, F., & Tohme, J. (2008). Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. Molecular Phylogenetics and Evolution, 49(1), 260–267.

Costa, A. M., Spehar, C. R., & Sereno, J. R. B. (2012). Conservação de recursos genéticos no Brasil. Embrapa Cerrados-Livro científico.

Cruz, C. D., Ferreira, F. M., & Pessoni, L. A. (2011). Biometria aplicada ao estudo da diversidade genética. Visconde do Rio Branco: Suprema, 620.

Debbi, A., Boureghda, H., Monte, E., & Hermosa, R. (2018). Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Frontiers in Microbiology, 0.

Carmen, M. S. J., Rodríguez Z. F. A., Cabrera, T. D., Sánchez H. C. V., & Vargas, P. O. (2019). Agromorphological characterization of wild and weedy populations of Physalis angulata in Mexico. Scientia Horticulturae, 246, 86–94.

Delfini, J., Moda, C., V., Ruas, C. de F., Neto, J. dos S., Ruas, P. M., Buratto, J. S., Ruas, E. A., & Gonçalves, L. S. A. (2017). Distinctness of Brazilian common bean cultivars with carioca and black grain by means of morphoagronomic and molecular descriptors. PLoS ONE 12(11): e0188798.

Dias, L. dos S., Kageyama, P. Y., & Castro, G. C. T. (1997). Multivariate phenetic divergence in germplasm preservation of cacao (Theobroma cacao L.). AGROTROPICA, 9, 29–40.

Duputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043.

Fischer, G. (2000). Crecimiento y desarrollo. Producción, poscosecha y exportación de la uchuva, 9–26.

Fischer, G., Almanza, M. P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01–15.

Fufa, H., Baenziger, P. S., Beecher, B. S., Dweikat, I., Graybosch, R. A., & Eskridge, K. M. (2005). Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 145(1), 133–146.

Fukushima, A., Nakamura, M., Suzuki, H., Yamazaki, M., Knoch, E., Mori, T., Umemoto, N., Morita, M., Hirai, G., Sodeoka, M., & Saito, K. (2016). Comparative Characterization of the Leaf Tissue of Physalis alkekengi and Physalis peruviana Using RNA-seq and Metabolite Profiling. Frontiers in Plant Science, 7:1883.

Ganga, R. M. D., Ruggiero, C., Lemos, E. G. de M., Grili, G. V. G., Gonçalves, M. M., Chagas, E. A., & Wickert, E. (2004). Diversidade genética em maracujazeiro-amarelo utilizando marcadores moleculares Faflp. Revista Brasileira de Fruticultura, 26, 494–498.

Gonçalves, L. S. A., Rodrigues, R., AMARAL JÚNIOR, A. Karasawa, M., & Sudré, C. P. (2008). Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genetics and Molecular Research, 7(4), 1289–1297.

González, O., Cotes, T. J. M., Medina, C. C. I., Lobo, A. M., & Navas, A. A. (2008). Caracterización morfológica de cuarenta y seis accesiones de uchuva (Physalis peruviana L.), en Antioquia (Colombia). Revista Brasileira de Fruticultura, 30, 708–715.

Herrera, M. A., Fischer, G., & Chacon Sánchez, M. I. (2012). Agronomical evaluation of cape gooseberries (Physalis peruviana L.) from central and north-eastern colombia. Agronomía Colombiana.

Higa, R. H., Almeida, R. L. C., Ibelli, A. M. G., & Santos, I. L. N. (2010). Estudo de algoritmos de biclustering para a análise de expressão gênica utilizando a tecnologia de microarranjo. Embrapa Informática Agropecuária-Documentos, 1677-9274.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of statistical software, 25(1), 1–18.

Lotti, C., Marcotrigiano, A. R., De Giovanni, C., Resta, P., Ricciardi, A., Zonno, V., Fanizza, G., & Ricciardi, L. (2008). Univariate and multivariate analysis performed on bio-agronomical traits of Cucumis melo L. germplasm. Genetic Resources and Crop Evolution, 55(4), 511–522.

Lu, L., Luo, T., Zhao, Y., Cai, C., Fu, Z., & Jin, Y. (2019). Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Science of the Total Environment, 667, 94–100.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Studer, M., Roudier, P., Gonzalez, J., Kozlowski, K., & Schubert, E. (2019). Package cluster: Finding Groups in Data: Cluster Analysis Extended. R package version 2.1. 0.

Martínez, M. (1998). Revisión de Physalis sección Epiteiorhiza (Solanaceae). Anales del Instituto de Biología. Serie Botánica, 69(2), 71–117.

Medina, M. J. R., Almaraz, A. N., González, E. M. S., Uribe, S. J. N., González, V. L. S., & Herrera, A. Y. (2015). Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical studies, 56(1), 1–13.

Melão, A. V., Pereira, M. G., Krause, W., Gonçalves, L. S. A., & Moreira, W. G. (2015). Caracterização agronômica e divergência genética entre acessos de abacaxizeiro nas condições do estado de Mato Grosso. Revista Brasileira de Fruticultura, 37, 952–960.

Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—Salient statistical tools and considerations. Crop science, 43(4), 1235–1248.

Nahak, S. C., Nandi, A., Sahu, G. S., Tripathy, P., Dash, S. K., Patnaik, A., & Pradhan, S. R. (2018). Studies on variability, heritability and genetic advance for yield and yield contributing characters in chilli (Capsicum annuum L.). J. Pharma. Phytochem, 7(1), 2506–2510.

Nerling, D., Coelho, C. M. M., & Brümmer, A. (2018). Biochemical profiling and its role in physiological quality of maize seeds. Journal of Seed Science, 40, 07–15.

Pandey, M. K., Pandey, A. K., Kumar, R., Nwosu, C. V., Guo, B., Wright, G. C., Bhat, R. S., Chen, X., Bera, S. K., & Yuan, M. (2020). Translational genomics for achieving higher genetic gains in groundnut. Theoretical and Applied Genetics, 133(5), 1679–1702.

Pulgarín, O. (1989). Caracterización fenotípica preliminar de 13 colecciones de uchuva (Physalis peruviana L.). Trabajo de grado (Biólogo). Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.

Rebouças, T. A., Haddad, F., Ferreira, C. F., de Oliveira, S. A. S., da Silva Ledo, C. A., & Amorim, E. P. (2018). Identification of banana genotypes resistant to Fusarium wilt race 1 under field and greenhouse conditions. Scientia Horticulturae, 239, 308–313.

Salazar, G., M. R., Jones, J., Chaves, B., Cooman, A., & Fischer, G. (2008). Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Revista Brasileira de Fruticultura, 30, 862–867.

Samuels, J. (2015). Biodiversity of food species of the Solanaceae family: A preliminary taxonomic inventory of subfamily Solanoideae. Resources, 4(2), 277–322.

Santos, E. R., Barros, H. B., Capone, A., de Melo, A. V., Cella, A. J. S., & dos Santos, W. R. (2012). Divergência genética entre genótipos de soja com base na qualidade de sementes. Revista Brasileira de Ciências Agrárias, 7(2), 247–254.

Silva, D. F, Pio. R., Micheli, M., Soares, J. D. R., Martins, A. D., & Nogueira, P. V. (2018). Productive and qualitative parameters of four Physalis species cultivated under colored shade nets. Revista Brasileira de Fruticultura, 40-2.

Silva, D. F, Pio. R., Soares, J. D. R., Nogueira, P. V., Peche, P. M., & Villa, F. (2016). The production of Physalis spp. Seedlings grown under different-colored shade nets. Acta Scientiarum. Agronomy, 382-257.

Sobral, K. M. B., Ramos, S. R. R., Goncalves, L. S. A., Amaral, J. A. T., & Aragão, W. M. (2012). Variabilidade genética entre acessos de coqueiro-anão utilizando técnicas de análise multivariada. Magistra, 24(4), 348–359.

Spooner, D., Van, T. R., & Vicente, M. C. (2005). Molecular markers for genebank management. IPGRI Technical Bulletin No. 10. International Plant Genetic Resources Institute, Rome.

Suescún, L., Sanchez, E., Gómez, M., Garcia, A. F. L., & Zarantes, V. N. (2011). Producción de plantas genéticamente puras de Uchuva. Editorial Kimpres Ltda., Bogota.

Sun, C.-P., Qiu, C.-Y., Zhao, F., Kang, N., Chen, L.-X., & Qiu, F. (2017). Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities. Scientific Reports, 7(1), 4057.

Team, R. C. (2018). R: A language and environment for statistical computing; 2018.

Trevisani, N., Schmit, R., Beck, M., Guidolin, A. F., & Coimbra, J. L. M. (2016). Selection of fisális populations for hibridizations, based on fruit traits. Revista Brasileira de Fruticultura, 38.

Tsivelikas, A. L., Koutita, O., Anastasiadou, A., Skaracis, G. N., Traka, M. E., & Koutsika-Sotiriou, M. (2009). Description and analysis of genetic diversity among squash accessions. Brazilian Archives of Biology and Technology, 52, 271–283.

Uarrota, V. G., Moresco, R., Coelho, B., Nunes, E. C., Peruch, L. A. M., Neubert, E. O., Rocha, M., & Maraschin, M. (2014). Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration. Food Chemistry, 161, 67–78.

Varmuza, K., & Filzmoser, P. (2009). Comparison of some linear regression methods – available in R – for a QSPR problem. Chemistry Central Journal, 31, P37.

Viana, A. P., Pereira, T. N. S., Pereira, M. G., Souza, M. M. de, Maldonado, J. F. M., & Amaral, J. A. T. do. (2003). Diversidade genética entre genótipos comerciais de maracujazeiro-amarelo (Passiflora edulis f. Flavicarpa) e entre espécies de passifloras nativas determinada por marcadores RAPD. Revista Brasileira de fruticultura, 25, 489–493.

Vieira, E. A., de Freitas, F. J., Faleiro, F. G., Bellon, G., Fonseca, K. G., Silva, M. S., de Paula, M. S. V., & Carvalho, L. J. C. B. (2013). Caracterização fenotípica e molecular de acessos de mandioca de indústria com potencial de adaptação às condições do Cerrado do Brasil Central. Semina: Ciências Agrárias, 34(2), 567–581.

Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), 24.

Whitson, M., & Manos, P. S. (2005). Untangling Physalis (Solanaceae) from the Physaloids: A two-gene phylogeny of the Physalinae. Systematic Botany, 30(1), 216–230.

Publicado

17/01/2022

Cómo citar

SILVA JUNIOR, A. D. .; ZEIST, A. R.; LEAL, M. H. S. .; OLIVEIRA, J. N. M. de .; OLIVEIRA, G. J. A. .; TOROCO, B. da R. .; SILVA, D. F. da .; NOGUEIRA, A. F. . Divergencia genética en especies e híbridos interespecíficos de Physalis basados en caracteres morfoagronómicos. Research, Society and Development, [S. l.], v. 11, n. 2, p. e4311225464, 2022. DOI: 10.33448/rsd-v11i2.25464. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25464. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas