Analysis of the combustion of biomethane from urban solid waste for insertion into the natural gas network

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27135

Keywords:

Biomethane; Natural Gas; Biomass; Bioenergy; Energy potential.

Abstract

With the growth of the population and the increase in demand for energy, the need arises for the development of alternative sources of generation. Biomethane obtained from biogas purification, which can be extracted from the decomposition of municipal solid waste, present in abundant quantities in many Brazilian cities, has emerged as an interesting alternative to complement the use of gases for combustion. Since the main fuel used today is natural gas, of fossil origin and with negative environmental impacts in its extraction, this article promotes an analysis of the energy and environmental viability of the use of biomethane for injection in the natural gas network, the computational tools. The results obtained indicate that the gas emissions from the combustion of natural gas and biomethane are practically equivalent and the difference in the flame temperature values between the fuels is around 7.1%. Thus, the insertion of biomethane in the natural gas network, besides not implying the increase of environmental impacts also does not promote significant losses in the energetic characteristics of the mixture.

References

Andreadou, C. (2016). Modelling of Energy Production from Alternative Fuels. International Hellenic University.

Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. doi:10.1016/j.biotechadv.2018.01.011

ANP. (2017). Resolução ANP No 685. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis.

ANP. (2021). Resolução ANP No 852. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis.

Batista, M., Caiado, R. G. G., Quelhas, O. L. G., Lima, G. B. A., Leal Filho, W., & Yparraguirre, I. T. R. (2021). A framework for sustainable and integrated municipal solid waste management: Barriers and critical factors to developing countries. Journal of Cleaner Production, 312, 127516. doi:10.1016/j.jclepro.2021.127516

Casey, J. A., Savitz, D. A., Rasmussen, S. G., Ogburn, E. L., Pollak, J., Mercer, D. G., & Schwartz, B. S. (2016). Unconventional natural gas development and birth outcomes in Pennsylvania, USA. Epidemiology, 27(2), 163–172. doi:10.1097/EDE.0000000000000387

Cecconet, D., Callegari, A., & Capodaglio, A. G. (2022). UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water (Switzerland), 14(1), 115. doi:10.3390/w14010115

Codignole Luz, F., Volpe, M., Fiori, L., Manni, A., Cordiner, S., Mulone, V., & Rocco, V. (2018). Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresource Technology, 256, 102–109. doi:10.1016/j.biortech.2018.02.021

Duca, D., Maceratesi, V., Fabrizi, S., & Toscano, G. (2022). Valorising Agricultural Residues through Pelletisation. Processes, 10(2), 232. doi:10.3390/pr10020232

Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 66(1), 5098–5109. doi:10.4067/S0717-97072021000105098

EPE. (2021). Balanço Energético Nacional 2021: Ano base 2020. Empresa de Pesquisa Energética.

Gutierrez-Gomez, A. C., Gallego, A. G., Palacios-Bereche, R., Leite, J. T. de C., & Neto, A. M. P. (2021). Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. Journal of Cleaner Production, 293, 126145. doi:10.1016/j.jclepro.2021.126145

Khan, M. U., Lee, J. T. E., Bashir, M. A., Dissanayake, P. D., Ok, Y. S., Tong, Y. W., Shariati, M. A., Wu, S., & Ahring, B. K. (2021). Current status of biogas upgrading for direct biomethane use: A review. Renewable and Sustainable Energy Reviews, 149, 111343. doi:10.1016/j.rser.2021.111343

Lazaro, L. L. B., Soares, R. S., Bermann, C., Collaço, F. M. A., Giatti, L. L., & Abram, S. (2022). Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime? Energy Research and Social Science, 85, 102404. doi:10.1016/j.erss.2021.102404

Li, X., Yan, P., Ma, C., & Wang, J. (2021). Structural design and optimization of a solar spouted bed reactor of biomass gasification. Applied Thermal Engineering, 194, 117058. doi:10.1016/j.applthermaleng.2021.117058

Mendonça, C., Oliveira, J. P. J. de, Hiranobe, C. T., Santos, R. J. dos, & Paim, L. L. (2021). Resíduos sólidos urbanos de poda de gramíneas como fonte alternativa de energia: um estudo de caso na cidade de Rosana. Research, Society and Development, 10(13), e124101320803. doi:10.33448/rsd-v10i13.20803

Murillo, H. A., Pagés-Díaz, J., Díaz-Robles, L. A., Vallejo, F., & Huiliñir, C. (2022). Valorization of oat husk by hydrothermal carbonization: Optimization of process parameters and anaerobic digestion of spent liquors. Bioresource Technology, 343, 126112. doi:10.1016/j.biortech.2021.126112

Nise, N. S. (2000). Engenharia de Sistemas de Controle (3rd ed.). Rio de Janeiro: LTC.

Olikara, C., & Borman, G. L. (1975). A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines. SAE Technical Paper Series. doi:10.4271/750468

Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (EPA) e Biogás (Cetesb). Revista Brasileira de Estudos de Populacao, 33(1), 175–188. doi:10.20947/S0102-309820160009

Raimundo, D. R., Pedreira, J. R., Sousa, L. C., Cordova, M. E. H., & Miranda, R. T. (2017). Estudo da viabilidade econômica e da produção energética do biogás gerado no tratamento de efluentes, aplicados à cidade de Pouso Alegre- MG. Revista Brasileira de Energias Renováveis, 6(5), 995–1016. doi:10.5380/rber.v6i5.52804

Scarlat, N., Dallemand, J. F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472. doi:10.1016/j.renene.2018.03.006

Singhal, S., Agarwal, S., Arora, S., Sharma, P., & Singhal, N. (2017). Upgrading techniques for transformation of biogas to bio-CNG: a review. International Journal of Energy Research, 41(12), 1657–1669. doi:10.1002/er.3719

Turns, S. R. (2012). An Introduction to Combustion: Concepts and Applications (3rd ed.). New York: McGraw-Hill.

Vieira, F. D., Francisco, A. C. de, & Bittencourt, J. V. M. (2016). Biometano e biogás como fontes de energia sustentável e ecologicamente viável. Revista Espacios, 37(18), 9. Retrieved from http://www.2.revistaespacios.com/a16v37n18/16371809.html

Published

11/03/2022

How to Cite

SANTOS , H. F. dos .; OLIVEIRA, J. P. J. de; SOUSA, M. S. P.; SANTOS, F. A.; SILVA JUNIOR, L. G. da; NARDELI, M. V.; MOURA, J. A. L. de; MIRANDA, C. G. e; SANTOS, R. J. dos .; PAIM, L. L. Analysis of the combustion of biomethane from urban solid waste for insertion into the natural gas network. Research, Society and Development, [S. l.], v. 11, n. 4, p. e6611427135, 2022. DOI: 10.33448/rsd-v11i4.27135. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27135. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings