Study of anaerobic biodegradation of herbicide 2,4-d under different redox conditions
DOI:
https://doi.org/10.33448/rsd-v11i6.28848Keywords:
Sediment; Pesticides; Pollution.Abstract
Brazil is one of the countries that most use herbicides in the world. Its indiscriminate use generates adverse effects on the environment and health. 2,4-Dichlorophenoxyacetic acid is among the 3 most used active ingredients in pesticide in Brazil and can be used in several crops. It can be found in surface and deep soils, sediments of rivers, lakes, seas and groundwater. Bioremediation is a technique that can be efficient to reduce the presence of this residue in the soil by treating polluted areas. Many studies have shown the efficiency of anaerobic degradation of 2,4-D through the metabolism of methanogenic, sulfate-reducing or denitrifying microorganisms. Thus, the present study aimed to analyze the degradation of 2,4-D under different oxidation-reduction conditions. Anaerobic degradation tests were carried out under different conditions, methanogenic, denitrifying and sulfetogenic, using the sediment collected in the Itaipú reservoir. The test results show that there was a variation in the removal of 2.4-D between the different oxidation-reduction media, being 9.26% for the denitrifying condition, 63.33% for the sulfetogenic condition and 100% between the methanogenic conditions. Therefore, the methanogenic medium was the one that presented the best conditions for the remediation of the 2,4-D herbicide under the conditions studied. The results presented may contribute to a more complete analysis of the behavior of this compound in the environment, helping to develop more efficient bioremediation processes.
References
Almeida, L. D., & Guimarães, E. C. (2017). Space Distribution Of The Ctc And The Relationship Macronutrients In A Red-Yellow Latosol Cultivated With Coffee. Agronomic Culture, 625–639.
Amarante Júnior, O.P., Santos, T.C.R., & Nunes, G.S. (2003). Breve Revisão de Métodos de Determinação de Resíduos do Herbicida Ácido 2,4- Diclorofenoxiacético (2,4-D). Quim. Nova, .26 (2), 223-229.
Anderson, W. P. (1996). Weed Science: Principles and Applications. 3 ed. St. Paul, MN: West Publishing. 193–197.
APHA, AWW, WEF. Standard methods for the examination of water and wastewater.22th. Edition. Amercian Public Health Association, Washingtion, DC., 2012.
Arora, P.K., & Bae, H. (2014). Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 13, 31. https://doi.org/10.1186/1475-2859-13-31
Azubuike, C.C., Chikere, C.B., & Okpokwasili, G.C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180
Bae, H.S., Yamagishi, T., & Suwa, Y. (2002). Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. Microbiology, 148: 221-227.
Barbosa AMC, Solano MLM, & Umbuzeiro GA (2015). Pesticides in Drinking Water – the Brazilian monitoring program. Front. Public Health, 3: 246.
Barbosa, D.B.P. (2013). Degradação de Atrazina em Solo sob Plantio Direto Aplicada em Formulações de Liberação Controlada. Tese de doutorado. Universidade Federal do Rio Grande do Sul, Porto Alegre.
Batalha, E.B.H.L. (2009) Água Potável: O Imperativo da Atualização. CEPIS/OPS, p.1-10.
Belluck, D.A., Benjamin, S.L., & Dawson, T. (1991). Groundwater contamination by atrazine and its metabolites: risk assessment, policy, and legal implications. In: SOMASUNDARAM, L., COATS, J.R. (Ed.). Pesticide transformation products: fate and significance in the environment. Washington: American Chemical Society, p 254-273.
Bouquard, C., Ouazzani, J., Prome, J.C., Briand, I.M, & Siat, P.P. (1997). Dechlorination of Atrazine by a Rhizobium sp. Isolate. American Society for Microbiology, vol. 63, nº 3, p. 862–866.
Braga, B., Hespanhol, I., Conejo, J. G. L., Mierzwa, J. C., Barros, M.T.L., Spencer, M., Porto, M., Nucci, N., Juliano, N., & Eiger, S. Introdução à Engenharia Ambiental. p.6, 2005.
Brasil. MMA - IBAMA – Instituto Brasileiro do Meio Ambiente. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos.
Breitenstein, A., Saano, A., Salkinoja-Salonen, M., Andreesen, JR, & Lechner, U. (2001) Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frap- Microbiol., 51, 365e371 (2001).
Brucha, G, Aldas-Vargas, A, Ross, Z. Peng, P, Atashgahi, S, Smidt, H, & Langenhoff, Sutton, N.B. 2,4-Dichlorophenoxyacetic acid degradation in methanogenic mixed cultures obtained from Brazilian Amazonian soil samples. Biodegradation (2021) 32:419–433 https://doi.org/10.1007/s10532-021-09940-3 (0123456789().,-volV() 0123458697().,-volV)
Campos, M.M.C. (2009) Estudo da Remoção e Toxicidade dos Pesticidas Atrazina e Oxifluorfem pela Cianobactéria Microcystis novacekii. Dissertação (Mestrado em Ciências Farmacêuticas) – Faculdade de Farmácia da Universidade Federal de Minas.
Candiotto. L. Z. P., Schimitz, L. A., Cichoski, P., Meira, R. A., Meira, S. G., & Dambros, T. C. (2013). Agricultura orgânica em oito município da região sudoeste do Paraná. Editora Unioeste: Francisco Beltrão, 2013.
Cataldo, D.A., Haroon, M., Schrader, L.E., & Youngs,V.L (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, v.6, p.71-80.
Chan, K. H., & Chu, W. (2005). Atrazine removal by catalytic oxidation processes with or without UV irradiation Part II: an analysis of the reaction mechanisms using LC/ESI-tandem mass spectrometry. Applied Catalysis B: Environmental, v. 58, p. 165 – 174.
Christiansen, N., & Ahring, B.K. (1996). Desulfitobacterium Hafniense sp. anaerobic, reductively dechlorinating bacterium, Int. 442e448.
Crafts, A.S. (1961). The chlorophenoxy herbicides. In: Crafts, A. S. The chemistry and mode of action of herbicides. Interscience Publishers, New York and London. Chapter 6. 52-70.
Douglass, J. F., Radosevich, M., & Tuovinen, O.H. (2015) Mineralization of atrazine in the river water intake and sediments of a constructed flow-through wetland. Ecological Engineering, 72, 35–39.
Deursen, M. V. (2016). Biodegradation of a pesticide mixture under different redox contidions. Sub-department of environmental technology, p.59.
Egler, M. (2002). Utilizando a Comunidade de Macroinvertebrados Bentônicos na Avaliação da Degradação de Ecossistemas de Rios em Áreas Agrícolas. Escola Nacional de Saúde Pública, FIOCRUZ, Dissertação de Mestrado, Rio de Janeiro, 2002.
Ghassemi, M., L. Fargo, P., Painter, S., Quinlivan, R., Scofield & A. Takata. (1981). Environmental Fates and Impacts of Major Forest Use Pesticides. EPA. Office of Pesticides and Toxic Substances. pp. 101-148.
Guedes, S. F. (2010). Estudo da Biodegradação do Ácido 2,4-diclorofenoxiacético, um Herbicida Selectivo Amplamente Utilizado na Agricultura, por uma Estirpe de Penicillium. Dissertação (Mestrado em Tecnologia e Segurança Alimentar)- Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, Distrito de Setúbal, Portugal.
Häggblom, M. (1990). Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol, 30, 115–141
Häggblom, M.M., Rivera, M.D., & Young L.Y. (1993). Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol., 59 (4): 1162-116.
Javaroni, R.C.A, Landgraf, M.D., & Rezende, M.O. (1998). Comportamento dos Herbicidas Atrazina e Alaclor em Solo Preparado para o Cultivo de Cana-de-Açúcar. Química Nova, p. 58-64.
La Cecilia, D., & Maggi, F. (2016). Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers. Journal of Environmental Management, v. 183, n. September, p. 673–686.
Lee, Y., Lee, C., & Yoon, J. (2003). High Temperature Dependence of 2,4-Dichlorophenoxyacetic Acid Degradation by Fe3+/H2O2 System. Chemosphere, 51, 963-971.
Li, Z., Suzuki, D., Zhang, C., Yoshida, N., Yang, S., & Katayama, A. (2013). Involvement of Dehalobacter strains in the anaerobic dechlorination of 2, 4, 6-trichlorophenol. Journal of bioscience and bioengineering, 116(5), 602-609.
Matias, T. P., Braga, J. K., & Brucha, G. (2019). Anaerobic biodegradation of atrazine under different redox conditions. International Journal of Advanced Engineering Research and Science (IJAERS), 6(10), 227-236. Doi: 10.22161/ijaers.610.35
Neves, P.D.M., Mendonça, M. R., Bellini, M., & Possas, I.B. (2020). Intoxicação por agrotóxicos agrícolas no estado de Goiás, Brasil, de 2005-2015: análise dos registros nos sistemas oficiais de informação. Ciênc. saúde coletiva 25 (7). https://doi.org/10.1590/1413-81232020257.09562018
Nicholson, D.K., Woods, S.L., Istok, J.D., & Peek, D.C. (1992). Reductive dechlorination of chlorophenols by a pentachlorophenolacclimated methanogenic consortium. Appl Environ Microbiol., 58, 2280-2286.
Pignati, W. A., Lima, F.A.N.S., Lara, S.S., CORREA, M.L.M., Barbosa, J. R., Leão, L.H.C., & Pignatti, M. G. (2017). Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, 22 (10), 3281-3293. http://dx.doi.org/10.1590/1413-812320172210.17742017.
Rodrigues, M. V. N., & Serra, G. E. Determinação de resíduos de 2,4D em amostras vegetais. Pesticidas R. Téc. Cient., Curitiba, 6,99-104.
Robles-Gonzalez, I., Rios-Leal, E., Ferrera-Cerrato, R., EsparzaGarcia, F., Rinderkenecht-Seijas, N., & Poggi-Varaldo, H.M. (2006) Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2, 4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source. Process Biochem 41(9):1951–1960.
Takeuchi, R., Suwa, Y., Yamagishi, T., & Yonezawa, Y. (2000). Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols. Chemosphere, 41: 1457-1462.
Vieira, M. G., Steinke, G., Arias, J. L. O., Primel, E. G., & Cabrera, L. C. C. (2017). Avaliação da Contaminação por Agrotóxicos em Mananciais de Municípios da Região Sudoeste do Paraná. Rev. Virtual de Química.
Villemur R, Lanthier M, Beaudet R, & Lépine F (2006) The Desulfitobacterium genus. FEEMS Microbiol Rev 30:706–733.
Walker, D. C., & Martin, J. P. (1975). Microobial decomposition of ring 14C-atrazine, cyanuric acid, and 2-choro-4,6-dinamino-s-trizine. Journal of Environmental Quality, Madison, 4, 134-139.
Wu CY, Zhuang L, Zhou SG, Li FB, & Li XM (2009) Fe (III)- enhanced anaerobic transformation of 2, 4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol Ecol 71(1):106–113
Xi, Y., Mallavarapu, M., & Naidu, R. (2010) Adsorption of the herbicide 2,4-D on organo-palygorskite. Applied Clay Science, 49, 255-261.
Yang, Z., Xu, X., Dai, M., Wang, L., Shi, X., & Guo, R (2017). Rapid degradation of 2, 4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technol, 232:146–151.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gabriela Vaz Lobo Barros; Bruna Del Busso Zampieri; Tális Pereira Matias; Gian Paulo Giovanni Freschi; Adriano Barbosa; Leonardo Henrique Soares Damasceno; Gunther Brucha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.