Identification of morphostructural domains using Clustering Large Applications, a case study in Quadrilátero Ferrífero
DOI:
https://doi.org/10.33448/rsd-v11i14.36235Keywords:
CLARA; Cluster analysis; Mineral search; Quadrilátero ferrífero.Abstract
Among the stages of a mining project, mineral research stands out, with the objective of identifying, studying and evaluating mineral deposits. In this specific stage, the inferred mineral resources are transformed into indicated and finally measured, and if their exploitation is feasible, into probable and/or proven mineral reserves. The discovery of these reserves is an impacting milestone for the industrial, technological and economic development of a society. The main objective of this article is to present the use of a machine learning technique to identify structures of particular geological interest, from satellite images. The technique applied was the Clustering Large Applications (CLARA) which is an unsupervised algorithm for clustering data, with high performance in massive databases. The area used as a case study was the Quadrilátero Ferrífero, one of the largest mineral provinces on the planet, located in the state of Minas Gerais, Brazil. The results of the CLARA model allowed the delineation of all the features that form the Quadrilátero Ferrífero. In this context, it is believed that this can be a good tool for selecting exploratory targets, reducing uncertainty and risk to investors. This not only attracts new companies for mineral research, but also expands the reserves of Brazilian mineral resources.
References
Alves, H. J. De P.; Fernandes, F. A..; Lima, K. P. De; Batista, B. D. De O..; Fernandes, T. J. The COVID-19 pandemic in Brazil: an application of the k-means clustering method. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5829109059, 2020. DOI: 10.33448/rsd-v9i10.9059.
Cabral, A. R., Zeh, A., Koglin, N., Seabra Gomes, A. A., Viana, D. J., & Lehmann, B. (2012). Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65Ga: Depositional U–Pb age of zircon from a metavolcanic layer. Precambrian Research, 204-205, 40–45. https://doi.org/10.1016/j.precamres.2012.02.006
Cloutis, E. A. (1996). Review Article Hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing, 17(12), 2215–2242. doi:10.1080/01431169608948770.
Dorr II, J. V. N. (1969). Physiographic, stratigraphic and structural development of the Quadrilatero Ferrífero, Minas Gerais, Brazil, U.S. Geological Survey Professional Paper. 641-A, 110 pp.
Dutra, L. F., Martins, M., & Lana, C. (2019). Sedimentary and U-Pb detrital zircons provenance of the Paleoproterozoic Piracicaba and Sabará groups, Quadrilátero Ferrífero, Southern São Francisco craton, Brazil. Brazilian Journal of Geology, 49(2). doi:10.1590/2317-4889201920180095
ENGESAT (2015). Sentinel-2. Curitiba-PR. Disponível em: http://www.engesat.com.br/sentinel-2/. Acesso em: 25 dez. de 2021.
ESA (2021). Sentinel Online. European Space Agency (ESA). Disponível em: https://sentinel.esa.int/web/sentinel/home. Acesso em: 09 dez. 2021.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. doi:10.1016/j.rse.2017.06.031
Kaufman, L., and Rousseeuw, P. J. (1987), Clustering by means of medoids. Statistical Data Analysis based on the L, Norm, edited by Y. Dodge, Elsevier/North-Holland, Amsterdam, pp. 405-416.
Kaufman, Leonard, and Peter Rousseeuw. (1990a). Finding Groups in Data: An Introduction to Cluster Analysis. Introduction. (n.d.). Wiley Series in Probability and Statistics, 1–67. doi:10.1002/9780470316801.ch1
Kaufman, Leonard, and Peter Rousseeuw. (1990b). Finding Groups in Data: An Introduction to Cluster Analysis. Partitioning Around Medoids (Program PAM). (n.d.). Wiley Series in Probability and Statistics, 68–125. doi:10.1002/9780470316801.ch2
Kaufman, Leonard, and Peter Rousseeuw. (1990c). Finding Groups in Data: An Introduction to Cluster Analysis. Clustering Large Applications (Program CLARA). (n.d.). Wiley Series in Probability and Statistics, 126–163. doi: 10.1002/9780470316801.ch3
Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. doi:10.1016/j.gsf.2015.07.003
Lima, N. P., Ferreira, M. T. S., Ruffeil, M., Ferreira, R. F., Pirette, W. & Galbiatti, H. F. (2020). Quadrilátero Ferrífero: Cinco Décadas de Histórias, Descobertas, Importância Econômica e Tecnológica e Novas Fronteiras para a Mineração de Ferro. In: Paulo de Tarso Amorim Castro; Issamu Endo; Antonio Luciano Gandini. (2020). Quadrilátero Ferrífero: Avanços do Conhecimento nos Últimos 50 Anos. Belo Horizonte: 3i. v. 1, 318-41
Lobato L.M., Baltazar O.F., Reis L.B., Achtschin A.B., Baars F.J., Timbó M.A., Berni G.V., Mendonça B.R.V., Ferreira D. (2005). Projeto Geologia do Quadrilátero Ferrífero - Integração e Correção Cartográfica em SIG com Nota Explicativa. Belo Horizonte, 68 p.
Nascimento, E. R. Do.; Albuquerque, M. A. De.; Barros, K. N. N. De O..; Barros, P. S. N. Cluster analysis applied to the Human Development Index (HDI) of Brazilian States. Research, Society and Development, [S. l.], v. 11, n. 2, p. e18011225747, 2022. DOI: 10.33448/rsd-v11i2.25747.
Sabins, F. F. (1997). Remote Sensing — Principles and Interpretation, 3rd edn., W.H. Freeman, New York, NY., 494 pp
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Reis, A. R. S.; Silva, K. P. da; Chagas, D. R. das. Analysis of leaf surface and clustering of 10 tree species: a tool in the identification of Amazonian species. Research, Society and Development, [S. l.], v. 10, n. 2, p. e58810212961, 2021. DOI: 10.33448/rsd-v10i2.12961.
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
USGS. (2017). Mineral commodity summaries 2016. United States Geological Survey (USGS). U.S. Geological Survey, 202 p.90-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Naim Khalil Ayache; Allan Erlikhman Medeiros Santos; Francisco de Castro Valente Neto; Denise de Fátima Santos da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.