Initial development of peanut seedlings grown in soil with herbicide residue
DOI:
https://doi.org/10.33448/rsd-v12i8.42960Keywords:
Arachis hypogaea; 2.4D; Picloram; Phytotoxicity; Residual.Abstract
Peanut has been used as an alternative in crop rotation in large areas of sugarcane. Plants may be subject to residual herbicides in these commercial areas as 2,4D and Picloram are applied for weed control. The objective of this research was to know the initial development of peanut seedlings grown in soil with herbicide residue. The experiment was carried out in August 2022, at Faculdades Integradas Stella Maris (FISMA), located in the Municipality of Andradina, State of São Paulo. The design was completely randomized (DIC), with five doses of the commercial product Dontor® (Picloram Acid and 2,4D Acid) as follows: absence; 1.0; 2.0; 4.0 and 8.0 L ha-1 and with four replications, totaling 20 plots or pots. The maximum point in the peanut response was at the dose of 5.0 liters per hectare of the herbicide 2,4D + Picloram. A dose greater than 5.00 liters per hectare of the herbicide 2,4D + Picloram compromises the development of peanuts. Leaf area and stomatal density responded in a negative linear fashion to herbicide doses.
References
Banzatto, D. A. & Kronka, S. N. (2013). Experimentação Agrícola. 4.ed. Funep, 237p.
Carlquist, S. (1975). Ecological strategies of xylem evolution. Berkeley: University of California, 259p.
Castro, E. M., Pereira, F. J. & Paiva, R. (2009). Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: UFLA, 251p.
Chang, F. H. & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica. 6: 57–65.
Easlon, H. M. & Bloom, A. J. (2014). Easy Leaf Area: automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7): 1-14. http://dx.doi.org/10.3732/apps.1400033
Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. 3.ed. Brasília, 353p.
Ferreira, J. H. S., Queiroz, M. C. M., Silva, I. P. F. & Melo, C. A. D. (2021). Seleção de espécies bioindicadoras da presença de tebuthiuron no solo. Agrarian, 14(52): 203-212. http://dx.doi.org/10.30612/agrarian.v14i52.13276
Gao, Z., Tong, Y., Zheng, C., Zhai, H., Yao, Y. & Du, Y. (2021). Dark inhibits leaf size by controlling carbohydrate and auxin catabolism in grape. Scientia Horticulturae, 288: 110377. http://dx.doi.org/10.1016/j.scienta.2021.110377
Gazola, T., Dias, M. F., Dias, R. C., Carbonari, C. A. & Velini, E. D. (2019). Effects of 2,4-D Herbicide on Species of the Digitaria Genus. Planta Daninha, 37: 1-12. http://dx.doi.org/10.1590/s0100-83582019370100131
Heuert, J., Xavier, M. F. N. & Suassuna, T. M. F. (2021). Avaliação agronômica para seleção de genótipos de amendoim visando precocidade. South American Sciences Issn, 2(1): 2-3. http://dx.doi.org/10.52755/sas.v2iedesp1.132
Kaur, A. & Kaur, N. (2019). Effect of sub-lethal doses of 2, 4-D sodium salt on physiology and seed production potential of wheat and associated dicotyledonous weeds. Indian Journal of Weed Science, 51(4): 352-357. http://dx.doi.org/10.5958/0974-8164.2019.00074.1
Lisboa, L. A. M., Cavichioli, J. C., Vitorino, R., Figueiredo, P. A. M., Viana, R. S. (2021). Nutrient suppression in passion fruit species: an approach to leaf development and morphology. Colloquium Agrariae, 17(3): 89-102. http://dx.doi.org/10.5747/ca.2021.v17.n3.a443
Lisboa, L. A. M., Cunha, M. L. O., Nakayama, F. T., Godoy, I. J., Vitorino, R. A. & Figueiredo, P. A. M. (2021). Productive and morph-physiological parameters of peanut cultivars. Ipê Agronomic Journal, 5(1): 1-8. http://dx.doi.org/10.37951/2595-6906.2021v5i1.6511
Mehdizadeh, M. (2019). Sensitivity of oilseed rape (Brassica napus L.) to soil residues of imazethapyr herbicide. International Journal of Agriculture, Environment and Food Sciences, 46-49. http://dx.doi.org/10.31015/jaefs.2019.1.10
Marques, G. R., Carrega, W. C., Piazentine, A. E. & Alves, P. L. C. A. (2021). Mistura de herbicidas na cultura do amendoim. South American Sciences, 2(1): 2-3. http://dx.doi.org/10.52755/sas.v2iedesp1.154
Neves, G. F. O., Brito, B. S., Januário, T. V. V., Santos Junior, E. D. & Lisboa, L. A. M. (2022). Morphophysiological and developmental parameters of maize varieties. Journal of Biotechnology and Biodiversity, 10(3): 261-271. http://dx.doi.org/10.20873/jbb.uft.cemaf.v10n3.neves
Nascimento, A. L. V., Pereira, G. A. M., Pucci, L. F., Alves, D. P., Gomes, C. A. & Reis, M. R. (2020). Tolerance of Cabbage Crop to Auxin Herbicides. Planta Daninha, 38: 1-14. http://dx.doi.org/10.1590/s0100-83582020380100017
Parry, C., Blonquist Junior, J. M. & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment, 37: 2508–2520. https://doi.org/10.1111/pce.12324
Pinheiro, G. H. R., Marques, R. F., Araújo, P. P. S., Martins, D., Marchi, S. R. (2021). Hormesis effect of 2,4-D choline salt on soybean biometric variables. Chilean Journal of Agricultural Research, 81(4): 536-545. http://dx.doi.org/10.4067/s0718-58392021000400536
Pinheiro, G. H. R., Marques, R. F., Araújo, P. P. S., Martins, D., Marchi, S. R. (2021). Hormesis effect of 2,4-D choline salt on soybean biometric variables. Chilean Journal Of Agricultural Research, 81(4): 536-545. http://dx.doi.org/10.4067/s0718-58392021000400536
Raij, B. Van, Cantarella, H., Quaggio, J. A., Hiroce, R. & Furlani, M. C. (1996). Recomendaçőes de adubaçăo e calagem para o Estado de Săo Paulo. 2. ed. Campinas :Instituto Agronômico, 285 p. (IAC. Boletim Técnico, 100).
R Studio Team. (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, URL: http://www.rstudio.com/
Silva, J. R. O., Marques, J. N. R., Godoy, C. V. C., Batista, L. B., Silva, A. A. & Ronchi, C. P. (2019). 2,4-D Hormesis Effect on Soybean. Planta Daninha, 37: 1-8. http://dx.doi.org/10.1590/s0100-83582019370100146
Taiz, L., Zeiger, E., Moller, I.& Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed, 888p.
Zhang, K., Schumacher, L., Maltais-Landry, G., Grabau, Z. J., George, S., Wright, D., Small, I. M. & Liao, H. (2022). Integrating perennial bahiagrass into the conventional rotation of cotton and peanut enhances interactions between microbial and nematode communities. Applied Soil Ecology, 170: 1-12. http://dx.doi.org/10.1016/j.apsoil.2021.104254
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lucas Aparecido Manzani Lisboa; Guilherme Bandeca Rafachinho; José Carlos Cavichioli; Aldeir Silva; Thiago de Souza Ferreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.