Initial development of peanut seedlings grown in soil with herbicide residue

Authors

DOI:

https://doi.org/10.33448/rsd-v12i8.42960

Keywords:

Arachis hypogaea; 2.4D; Picloram; Phytotoxicity; Residual.

Abstract

Peanut has been used as an alternative in crop rotation in large areas of sugarcane. Plants may be subject to residual herbicides in these commercial areas as 2,4D and Picloram are applied for weed control. The objective of this research was to know the initial development of peanut seedlings grown in soil with herbicide residue. The experiment was carried out in August 2022, at Faculdades Integradas Stella Maris (FISMA), located in the Municipality of Andradina, State of São Paulo. The design was completely randomized (DIC), with five doses of the commercial product Dontor® (Picloram Acid and 2,4D Acid) as follows: absence; 1.0; 2.0; 4.0 and 8.0 L ha-1 and with four replications, totaling 20 plots or pots. The maximum point in the peanut response was at the dose of 5.0 liters per hectare of the herbicide 2,4D + Picloram. A dose greater than 5.00 liters per hectare of the herbicide 2,4D + Picloram compromises the development of peanuts. Leaf area and stomatal density responded in a negative linear fashion to herbicide doses.

References

Banzatto, D. A. & Kronka, S. N. (2013). Experimentação Agrícola. 4.ed. Funep, 237p.

Carlquist, S. (1975). Ecological strategies of xylem evolution. Berkeley: University of California, 259p.

Castro, E. M., Pereira, F. J. & Paiva, R. (2009). Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: UFLA, 251p.

Chang, F. H. & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica. 6: 57–65.

Easlon, H. M. & Bloom, A. J. (2014). Easy Leaf Area: automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7): 1-14. http://dx.doi.org/10.3732/apps.1400033

Embrapa – Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. 3.ed. Brasília, 353p.

Ferreira, J. H. S., Queiroz, M. C. M., Silva, I. P. F. & Melo, C. A. D. (2021). Seleção de espécies bioindicadoras da presença de tebuthiuron no solo. Agrarian, 14(52): 203-212. http://dx.doi.org/10.30612/agrarian.v14i52.13276

Gao, Z., Tong, Y., Zheng, C., Zhai, H., Yao, Y. & Du, Y. (2021). Dark inhibits leaf size by controlling carbohydrate and auxin catabolism in grape. Scientia Horticulturae, 288: 110377. http://dx.doi.org/10.1016/j.scienta.2021.110377

Gazola, T., Dias, M. F., Dias, R. C., Carbonari, C. A. & Velini, E. D. (2019). Effects of 2,4-D Herbicide on Species of the Digitaria Genus. Planta Daninha, 37: 1-12. http://dx.doi.org/10.1590/s0100-83582019370100131

Heuert, J., Xavier, M. F. N. & Suassuna, T. M. F. (2021). Avaliação agronômica para seleção de genótipos de amendoim visando precocidade. South American Sciences Issn, 2(1): 2-3. http://dx.doi.org/10.52755/sas.v2iedesp1.132

Kaur, A. & Kaur, N. (2019). Effect of sub-lethal doses of 2, 4-D sodium salt on physiology and seed production potential of wheat and associated dicotyledonous weeds. Indian Journal of Weed Science, 51(4): 352-357. http://dx.doi.org/10.5958/0974-8164.2019.00074.1

Lisboa, L. A. M., Cavichioli, J. C., Vitorino, R., Figueiredo, P. A. M., Viana, R. S. (2021). Nutrient suppression in passion fruit species: an approach to leaf development and morphology. Colloquium Agrariae, 17(3): 89-102. http://dx.doi.org/10.5747/ca.2021.v17.n3.a443

Lisboa, L. A. M., Cunha, M. L. O., Nakayama, F. T., Godoy, I. J., Vitorino, R. A. & Figueiredo, P. A. M. (2021). Productive and morph-physiological parameters of peanut cultivars. Ipê Agronomic Journal, 5(1): 1-8. http://dx.doi.org/10.37951/2595-6906.2021v5i1.6511

Mehdizadeh, M. (2019). Sensitivity of oilseed rape (Brassica napus L.) to soil residues of imazethapyr herbicide. International Journal of Agriculture, Environment and Food Sciences, 46-49. http://dx.doi.org/10.31015/jaefs.2019.1.10

Marques, G. R., Carrega, W. C., Piazentine, A. E. & Alves, P. L. C. A. (2021). Mistura de herbicidas na cultura do amendoim. South American Sciences, 2(1): 2-3. http://dx.doi.org/10.52755/sas.v2iedesp1.154

Neves, G. F. O., Brito, B. S., Januário, T. V. V., Santos Junior, E. D. & Lisboa, L. A. M. (2022). Morphophysiological and developmental parameters of maize varieties. Journal of Biotechnology and Biodiversity, 10(3): 261-271. http://dx.doi.org/10.20873/jbb.uft.cemaf.v10n3.neves

Nascimento, A. L. V., Pereira, G. A. M., Pucci, L. F., Alves, D. P., Gomes, C. A. & Reis, M. R. (2020). Tolerance of Cabbage Crop to Auxin Herbicides. Planta Daninha, 38: 1-14. http://dx.doi.org/10.1590/s0100-83582020380100017

Parry, C., Blonquist Junior, J. M. & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment, 37: 2508–2520. https://doi.org/10.1111/pce.12324

Pinheiro, G. H. R., Marques, R. F., Araújo, P. P. S., Martins, D., Marchi, S. R. (2021). Hormesis effect of 2,4-D choline salt on soybean biometric variables. Chilean Journal of Agricultural Research, 81(4): 536-545. http://dx.doi.org/10.4067/s0718-58392021000400536

Pinheiro, G. H. R., Marques, R. F., Araújo, P. P. S., Martins, D., Marchi, S. R. (2021). Hormesis effect of 2,4-D choline salt on soybean biometric variables. Chilean Journal Of Agricultural Research, 81(4): 536-545. http://dx.doi.org/10.4067/s0718-58392021000400536

Raij, B. Van, Cantarella, H., Quaggio, J. A., Hiroce, R. & Furlani, M. C. (1996). Recomendaçőes de adubaçăo e calagem para o Estado de Săo Paulo. 2. ed. Campinas :Instituto Agronômico, 285 p. (IAC. Boletim Técnico, 100).

R Studio Team. (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, URL: http://www.rstudio.com/

Silva, J. R. O., Marques, J. N. R., Godoy, C. V. C., Batista, L. B., Silva, A. A. & Ronchi, C. P. (2019). 2,4-D Hormesis Effect on Soybean. Planta Daninha, 37: 1-8. http://dx.doi.org/10.1590/s0100-83582019370100146

Taiz, L., Zeiger, E., Moller, I.& Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed, 888p.

Zhang, K., Schumacher, L., Maltais-Landry, G., Grabau, Z. J., George, S., Wright, D., Small, I. M. & Liao, H. (2022). Integrating perennial bahiagrass into the conventional rotation of cotton and peanut enhances interactions between microbial and nematode communities. Applied Soil Ecology, 170: 1-12. http://dx.doi.org/10.1016/j.apsoil.2021.104254

Downloads

Published

19/08/2023

How to Cite

LISBOA, L. A. M. .; RAFACHINHO, G. B. .; CAVICHIOLI, J. C. .; SILVA, A. .; FERREIRA, T. de S. . Initial development of peanut seedlings grown in soil with herbicide residue. Research, Society and Development, [S. l.], v. 12, n. 8, p. e8912842960, 2023. DOI: 10.33448/rsd-v12i8.42960. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/42960. Acesso em: 4 dec. 2024.

Issue

Section

Agrarian and Biological Sciences