Evaluation of the anticarcinogenic effect of strawberry (Fragaria x ananassa) on somatic cells of Drosophila melanogaster

Authors

DOI:

https://doi.org/10.33448/rsd-v12i10.43349

Keywords:

Anticarcinogenic effect; Epithelial tumor testing; Strawberry; Chemoprevention.

Abstract

Carcinogenesis is the process that leads to the formation of cancer, which can occur spontaneously or provoked by the actions of carcinogens. Combined chemoprevention, based on diet, is promising, as well as being more accessible to the population, has lower cost and acts to reduce the risk of cancer. In this context stands out the strawberry (Fragaria x ananassa), with high content of photochemical compounds, with rebound for phenolic compounds and their protective actions. In this context, the present research aimed to evaluate the anticarcinogenic effect of strawberry against damage induced by doxorubicin, through the test for detection of clones of epithelial tumors in somatic cells of Drosophila melanogaster. Two strains of D. melanogaster were used to perform the ETT: Warts and Multiple Wing hairs. The larvae obtained were submitted to carcinogenic evaluation, pre-treatment with strawberry and post-treatment with strawberry, in addition to negative control using reverse osmosis water and positive control of 0.4mm doxorubicin. The results of individuals treated with strawberry of 25%, 50% and 100% presented tumor frequencies of 0.1, 0.15 and 0.21, respectively, while in the pre-treatment with strawberry 50% and 100% and exposed DXR 0.4mm showed frequency of tumors per fly of 0,25 and 0.13 respectively and in the post-treatment there was a reduction in the frequency of tumors, since the higher the concentration, the lower the tumor frequency. It is concluded that the strawberry in the present experimental conditions presented anticarcinogenic effect, which suffered variation of the concentration tested.

References

Alvarez-Suarez, J. M. et al. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, 25(3) 289–294.

Alves E. M., & Nepomuceno J. C. (2012). Avaliação do efeito anticarcinogênico do látex do Avelós (Euphorbia tirucalli), por meio do teste para detecção de clones de tumor (warts) em Drosophila melanogaster. Perquirere, 9(2) 125-140.

Brasil (2019). Instituto Nacional de Câncer José Alencar Gomes da Silva. ABC do câncer: abordagens básicas para o controle do câncer. (5a ed.), Inca.

Camargo, T. M. (2019). Morango (Fragaria x ananassa), amora-preta (Rubus spp.) e mirtilo (Vaccinium ashei Reade): caracterização química, atividade antioxidante e ação sobre as enzimas digestivas alfa-glicosidase e alfa-amilase em dois ciclos produtivos das frutíferas. Dissertação apresentada ao Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos. Pelotas. 92.

Craig, C. R., & Stitzel, R. E. (2014). Farmacologia Moderna com Aplicações Clínicas. (6a ed.), Guanabara Koogan.

Dauchet, L. et al. (2006). Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136(1) 2588-2593.

Eeken, J. C. J et al. (2002). Induction of epithelial tumors in Drosophila melanogaster heterozygous for the tumor suppressor gene wts. Environmental and Molecular Mutagenesis, 40(4): 277-282.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Forbes-Hernandez, T. Y, et al. (2015). The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity? Critical Reviews In Food Science and Nutrition. Texas A & M International University.

Gasparrini, M. et al. (2017). Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food and Chemical Toxicology, 102(1) 1–10.

George, V. C., Dellaire, G., & Rupasinghe, H. P. V. (2017). Plant flavonoids in cancer chemoprevention: role in genome stability. The Journal of Nutritional Biochemistry, 45 1–14.

Giampieri, F. et al. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5) 1386–1398.

Gupta, S. C. et al. (2010). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica Et Biophysica Acta, 1799(10) 775–787.

Hazas, M. C. L. L. et al. (2017). Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 65(31) 6477–6487.

Hollman, P. C. H., & Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol., Oxford, 37(1) 937 – 942.

Inca (2002). Fisiopatologia do câncer. Ações de enfermagem no controle do câncer. (2a ed.), INCA, 55-81.

Inca (2019). Instituto Nacional Do Câncer. Estimativa 2020: incidência de câncer no Brasil. INCA, 2019. Braz. J. Hea. Rev., 3(6) 15660-15676.

Inca (2021). Exposição no trabalho e no ambiente. Instituto Nacional de Câncer. https://www.inca.gov.br/exposicao-no-trabalho-e-no-ambiente

Islam, M. S. et al. (2017). An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells. Oncotarget, 8(14) 23575–23587.

Justice, R. W. et al. (1995). The Drosophila tumor suppressor gene warts encodes a homolog o-f human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes & Development, 9(1) 534-546.

Landis-Piwowar, K. R., & Iyer, N. R. (2014). Cancer Chemoprevention: Current State of the Art. Cancer Growth and Metastasis, 7(1) 19-25.

Liu, R. H. (2013). Health Promoting Components of Fruits and Vegetables in the Diet. Advances in Nutrition, 4(3) 384S-392S.

López, I.., et al. (2017). p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ 24 1717–1729.

Nepomuceno, J. L. (2015). Using the Drosophila melanogaster to Assessment Carcinogenic Agents through the Test for Detection of Epithelial Tumor Clones (Warts). Adv Tech Biol Med, 3(3).

Nimptsch, K. et al. (2016). Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts12. The American Journal of Clinical Nutrition, 103(1) 184–191.

Nunes, G, Novello, D. (2020). Ação antioxidante e propriedades funcionais do morango no organismo humano. Revista Valore, 5(1) 5004.

Oliveira, R. da S. et al. (2020). Ação quimiopreventiva dos fitoquímicos por meio da regulação do fator de transcrição Nrf2: revisão integrativa da literatura. Revista Brasileira de Cancerologia, 66(1).

Pan, M. H., Ho, C. T. (2008). Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society Reviews, 37(11) 2558–2574.

Pinto, M. S. (2008). Compostos bioativos de cultivares brasileiras de morango (Fragaria x ananassa Duch): caracterização e edtudo da biodispoibilidade dos derivados de ácido elágico. Tese para obtenção de doutorado. 116.

Santos, M. G. S., & Oliveira, R. G. S. (2018). Efeito modulador do óleo de rícino, avaliado por meio do teste para detecção de clones de tumores epiteliais (warts) em Drosophila melanogaster. Revista Perquirere, 15(1) 252-268.

Silva, M. R. et al. (2018). Avaliação do efeito anticarcinogênico da própolis verde (Artepelin C) por meio do teste warts em células somáticas de Drosophila melanogaster. Revista Perquirere, 15(1) 285-296.

Souza, V. R. et al. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156(1) 362-368.

Spanó, M. A. et al. (2001). Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test. Molecular Mutagenesis, 16(5) 385-394.

Sung H. et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians).

Published

06/10/2023

How to Cite

REIS, A. L. M. .; CAMPOS , A. L. B. .; OLIVEIRA, R. G. S. . Evaluation of the anticarcinogenic effect of strawberry (Fragaria x ananassa) on somatic cells of Drosophila melanogaster. Research, Society and Development, [S. l.], v. 12, n. 10, p. e48121043349, 2023. DOI: 10.33448/rsd-v12i10.43349. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43349. Acesso em: 23 dec. 2024.

Issue

Section

Health Sciences