Literature review on hydrogels in 3D skin printing: Applications, challenges and trends

Authors

DOI:

https://doi.org/10.33448/rsd-v12i13.44167

Keywords:

Hydrogel; Bioprinting; 3D skin; Biotechnology; Animal testing; Cosmetics.

Abstract

The following article focuses on the use of hydrogels in 3D skin printing as an alternative method to experimenting with cosmetic products on animals. It will review all aspects and concepts related to 3D skin bioprinting, from the concept of skin, creation of the 3D model, biomaterials used and their suitability, highlighting the hydrogel, types of cells and their functions, real bioprinting technologies, together with the challenges and future prospects, satisfying clinical and industrial needs. Objective: To analyze the applications, challenges and trends of hydrogel in 3D skin printing within the cosmetics industry. Method: This study is a literature review, in which data was collected from a specific area of knowledge, with the aim of analyzing the use of hydrogel in 3D skin printing, as well as its challenges and future trends. Conclusion: 3D bioprinting is a promising technology that can achieve the rapid and reliable production of biomimetic cellular skin substitutes, satisfying clinical and industrial needs.

References

Alonso, F., Carmen, M. et. al. (2018). Bioimpresión 3D y sus aplicaciones en Biomedicina. CSIC - Centro de Investigaciones Biológicas Margarita Salas. http://hdl.handle.net/10261/169270.

Amaral, C. S. T., de Souza, O., Hilkner de Souza, L., José da Silva, G., & Fatori Trevizan, L. N. (2020). Novos caminhos da biotecnologia: As inovações da indústria 4.0 na saúde humana. Revista Brasileira Multidisciplinar, 23(3), 203-231. https://doi.org/10.25061/2527-2675/ReBraM/2020.v23i3.889

ANVISA. (2012). Guia para Avaliação de Segurança de Produtos Cosméticos. Agência Nacional de Vigilância Sanitária. Anvisa. https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/cosmeticos/manuais-e-guias/guia-para-avaliacao-de-seguranca-de-produtos-cosmeticos.pdf.

Araújo, J. L. (2022). Hidrogel como sistema de liberação da fotossensibilizante clorofila A, para aplicação em terapia fotodinâmica frente ao câncer de pele do tipo melanoma. http://repositorio2.unb.br/jspui/handle/10482/45171

Augulski, A. B. B. (2012). Desenvolvimento de um modelo de cultivo de células-tronco da derme humana em hidrogel de carragenana extraído da alga vermelha Kappaphycus alvarezii. https://repositorio.ufsc.br/handle/123456789/100552.

Augustine R. (2018). Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in biomaterials, 7(2), 77–92. Pubmed. https://pubmed.ncbi.nlm.nih.gov/29754201/.

Blaeser, A. Heilshorn, S. & Campos, D. F. D. (2019). Smart Bioinks as de novo Building Blocks to Bioengineer Living. Tissues. Gels, 5(2), 29. https://www.mdpi.com/2310-2861/5/2/29/htm. https://doi.org/10.3390/gels5020029

Bringel, F. A. (2011). Avaliação morfofuncional de pele humana conservada em glicerol e submetida à radiação gama: estudo em camundongos atímicos. https://www.teses.usp.br/teses/disponiveis/85/85131/tde-1008201-182943/publico/TESE.pdf.

Campão, C. R. & Bühring, M. A. (2022). Os testes de cosméticos em animais não humanos como prática cruel e especista: uma análise sob a ótica do direito dos animais. https://www.pucrs.br/direito/wp-content/uploads/sites/11/2022/02/carolina_campao.pdf.

Campos D.F.D., Blaeser A., Weber M., Jäkel J., Neuss S., Jahnen-Dechent W. & Fischer H. (2012). Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication. IOP Science. https://iopscience.iop.org/article/10.1088/1758-5082/5/1/015003/meta.

Carreira, A. S., Manso, D. G. S. & Monteiro, G. G. (2022). A utilização e aplicação da impressora 3d na área de saúde. Revista Ibero-Americana de Humanidades, Ciências e Educação. https://periodicorease.pro.br/rease/article/view/6896.

Chun, H. J., Kang, M. S. & Kim, W. H. et. al. (2023). Advances and Innovations of 3D Bioprinting Skin. Biomolecules. https://www.mdpi.com/2218-273X/13/1/55.

Dernowsek, J. A. (2019). Por que ainda não temos órgãos funcionais bioimpressos?. Biofabricação. https://www.biofabricacao.com/single-post/2018/11/13/Por-que-ainda-n%C3%A3o-temos-%C3%B3rg%C3%A3os-funcionais-bioimpressos-ou-biofabricados.

Duin, S. Shutz, K. & Ahlfeld, T. (2019). 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Advanced Healthcare Materials. https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801631.

Eduardo, F. M. C. & Mezzomo, T. R.. (2022) Anatomofisiologia do corpo humano. 1. ed. Curitiba: Intersaberes. E-book. https://plataforma.bvirtual.com.br.

Eskes, C., Vliet, E. V. & Maibach, H. I. (2017). Alternatives for Dermal Toxicity Testing. Springer International Publishing AG. https://link.springer.com/chapter/10.1007/978-3-319-50353-0_1.

Figueiredo, B. B. & Cesar, F. I. G. (2022).Um estudo da utilização da impressora 3d na engenharia e na medicina. RECISATEC–Revista Científica Saúde e Tecnologia, https://recisatec.com.br/index.php/recisatec/article/view/70/60.

Gornowicz-Porowska, J., Dańczak-Pazdrowska, A. & Rybka, D. J. et. al. (2022). 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synthetic Biology. 11(1), 1-521. https://pubs.acs.org/doi/epdf/10.1021/acssynbio.1c00547.

Grigoryan, B. J., Paulsen, S. & Miller, J. S. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364(64390, 458-64. https://www.science.org/doi/full/10.1126/science.aav9750.

Guillemot, et al. (2010). Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux. International Society for Biofabrication. https://iopscience.iop.org/article/10.1088/1758-5082/2/1/010201/pdf.

Guimarães, L. D. (2023). Avaliação de impressos de alginato e gelatina utilizando a bioimpressora Allevi 2. Repositório UFU. https://repositorio.ufu.br/handle/123456789/37926.

Gusmão, A. O., Silva, A. R.& Medeiros, M. O. (2017). A biotecnologia e os avanços da sociedade. Biodiversidade, 16(1). https://www.semanticscholar.org/paper/A-BIOTECNOLOGIA-E-OS-AVAN%C3%87OS-DA-SOCIEDADE-Gusm%C3%A3o-Silva/f7103a20fa15a2738c3b2fe5e46cc83a394a85a3.

Heinze, D., Champeau, M. & Titotto, S. (2019). Designing 3d printer and biocompatible hydrogels inks: an integrated approach. Associação Brasil de Engenharia e Ciências Mecânicas. https://www.researchgate.net/profile/Silvia-Titotto-2/publication/335511900_DESIGNING_3D_PRINTER_AND_BIOCOMPATIBLE_HYDROGELS_INKS_AN_INTEGRATED_APPROACH/links/6238aa57b702a324bd331920/DESIGNING-3D-PRINTER-AND-BIOCOMPATIBLE-HYDROGELS-INKS-AN-INTEGRATED-APPROACH.pdf.

Heinze, D., Titotto, S., Viana, T. & Champeau, M., (2019). Designing 3d Printer And Biocompatible Hydrogels Inks: An Integrated Approach. Associação Brasil de Engenharia e Ciências Mecânicas. https://www.researchgate.net/publication/335511900_DESIGNING_3D_PRINTER_AND_BIOCOMPATIBLE_HYDROGELS_INKS_AN_INTEGRATED_APPROACH.

Irvine, S.A., Venkatraman, S.S., (2016) Bioprinting and Differentiation of Stem Cells. Molecules. Pubmed. https://pubmed.ncbi.nlm.nih.gov/27617991/.

Jana, S. & Lerman, A. (2015). Bioprinting a cardiac valve. Biotechnology advances, 33(8), 1503–1521. https://pubmed.ncbi.nlm.nih.gov/26254880/.

Kelly, E. (2018). Fda regulation of 3d-printed organs and associated ethical challenges. Scholarship. https://scholarship.law.upenn.edu/cgi/viewcontent.cgi?article=9610&context=penn_law_review.

Kosemund-Meynen, K., Hollnagel, H. M. & Coenraads, P. J. et al. (2020). The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Science direct. https://www.sciencedirect.com/science/article/pii/S0300483X20300603.

Maher, P.S., Keatch, R.P., Donnelly, K., Mackay, R.E. and Paxton, J.Z. (2009), Construction of 3D biological matrices using rapid prototyping technology, Rapid Prototyping Journal, 15(3), 204-210. https://doi.org/10.1108/13552540910960307

Marcomini, R., Fontes, A. B. et. al. (2020). Bioimpressão 3d: Uma revisão de materiais, processos e propriedades de biotintas. The Journal of Engineering and Exact Sciences – jCEC, 6(5). https://periodicos.ufv.br/jcec/article/view/11330/6383.

Mertz, L., (2013). What Is Biocompatibility?: A New Definition Based on the Latest Technology. IEEE. https://ieeexplore.ieee.org/abstract/document/6559140.

Millás, A., Lago, J. & Vasquez, L. P. et. al. (2019). Approaches to the development of 3D bioprinted skin models: the case of natural cosmetics. International Journal of Advance in Medical Biotechnology. https://journalamb.com/index.php/jamb/article/view/24/90.

Naahidi, S., Jafari, M. & Logan, M. et. al. (2017).Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Volume 35, Issue 5, September 2017, Pages 530-544. Science direct. https://www.sciencedirect.com/science/article/abs/pii/S0734975017300587.

Oliveira, N. A., Roballo, K. C. S., Lisboa, A. F. S., Sandini, T. M., Santos, A. C. dos. Martins, D. S., & Ambrosio, C. E.. (2017). Bioimpressão e produção de mini-órgãos com células tronco. Pesquisa Veterinária Brasileira, 37(9), 1032–1039. https://doi.org/10.1590/S0100-736X2017000900020

Oliveira, N. A. Roballo, K. C. S. & Neto, A. F. S. et. al. (2017). Bioimpressão e produção de miniórgãos com células tronco. Scielo. https://www.scielo.br/j/pvb/a/W9zfJHDMRhWmCYHRGfwGwwp/?lang=pt.

Ozbolat, I. T. & Zhang, Y., Yu, Y., Chen, H. (2013). Characterization of printable cellular micro-fluidic channels for tissue engineering. Pubmed. https://pubmed.ncbi.nlm.nih.gov/23458889/.

Patel, N. R. & Gohil, P. P. (2023). A Review on Biomaterials: Scope, Applications & PATRICIA, Hubner. Desenvolvimento de filmes de hidrogel à base de gelatina e PVA contendo óleos essenciais de lavanda e de pinus para aplicação como curativo. Repositório Digital da Universidade Federal do Rio Grande do Sul. https://www.lume.ufrgs.br/handle/10183/259200.

Patel1, N. R. & Gohil, P. P. Human Anatomy Significance. (2012). International Journal of Emerging Technology and Advanced Engineering. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b0ebd5063f7fb368cad35096b89bf6bba9209107.

Pati, F., Jang, J., Lee J. W. & Cho D. W. (2015). Extrusion bioprinting, p.123-152. In: Atala A. & Yoo J. J. (Eds), Essentials of 3D Biofabrication Translation. Academic Press, Boston, MA, USA. Scielo. https://www.scielo.br/j/pvb/a/W9zfJHDMRhWmCYHRGfwGwwp/?lang=pt.

Patterson, J., Siew, R. & Herring, S. W. et. al. (2010). Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Volume 31, Issue 26, September 2010, Pages 6772-6781. https://www.sciencedirect.com/science/article/abs/pii/S0142961210006654.

Pereira, A. P. V., Vasconcelos, W. L. & Oréfice, R. L. (1999). Novos biomateriais: híbridos orgânico-inorgânicos bioativos. Scielo. https://www.scielo.br/j/po/a/PMS8CGPphJZqs4rqFcCdThm/.

Pérez Sanpablo, A. I., Romero Avila, E., & González Mendoza, A. (2021). Three-dimensional printing in healthcare. Revista Mexicana De Ingenieria Biomedica, 42(2), 32–48. https://doi.org/10.17488/RMIB.42.2.3

Pires,A.L.,Bierhalz, A. & Moraes, A. M. (2015). Biomaterials: Types, applications, and market. Scielo. https://www.scielo.br/j/qn/a/th7gjVpvdpthnctYbhtFznN/.

Pise, S. & Pise, A., et. al. (2020). Ban of Cosmetic Testing on Animals: A Brief Overview. Researchgate. https://www.researchgate.net/publication/343308461_Ban_of_Cosmetic_Testing_on_Animals_A_Brief_Overview.

Polonchuk, L., & Gentile, C. (2021). Current state and future of 3D bioprinted models for cardiovascular research and drug development. ADMET & DMPK, 9(4), 231–242. https://doi.org/10.5599/admet.951

Puvion-Dutilleul F & Puvion E. (1989). Ultrastructural localization of viral DNA in thin sections of herpes simplex virus type 1 infected cells by in situ hybridization. European Journal of Cell Biology. https://europepmc.org/article/med/2547616.

Ribeiro, M. J. P. (2009). Desenvolvimento de um Novo Hidrogel de Quitosano Para Futura Aplicação Como Substituto de Pele. Proquest. https://www.proquest.com/openview/624a46a7564b36c1fd47a5b3ec32abf9/1?pq-origsite=g.

Rodrigues, L. M. Oliveira, B. G. R. B. & Castilho, S. R. Et. Al. (2013) Segurança e eficácia do hidrogel de carboximetilcelulose à 2% em úlceras de perna. Vol. 5, Nº. 4, págs. 690-695. https://dialnet.unirioja.es/servlet/articulo?codigo=4767927.

Rogero, S. O., Carneiro, N. L. S. & Lopérgolo, L. C. (2006). Matriz de hidrogel de poli-vinil pirrolidona (pvp) e polietilenoglicol (peg) para dispositivo de liberação de fármaco. Instituto de Pesquisas Energéticas e Nucleares. http://repositorio.ipen.br/bitstream/handle/123456789/18550/12613.pdf?sequence=1.

Santos, G. B., Neto, N. T. & Paggiaro, A. O. et. al. (2011). Substitutos cutâneos: conceitos atuais e proposta de classificação. Scielo. https://www.scielo.br/j/rbcp/a/jTyrHmYJ4Qcf5H7rKZFWfgQ/?lang=pt&format=html

Santos, E. J. C. & Mazzeo, A.. (2021). Perspectivas da bioimpressão na medicina Regenerativa. Volume 5 – Edição 2 . https://www.unaerp.br/revista-cientifica-integrada/edicoes-anteriores/volume-5-edicao-2/4434-perspectivas-da-bioimpressao-na-medicina-regenerativa/file.

Seixas, J. R. P. C.. (2021). Produção e caracterização de hidrogéis à base de polissacarídeos contendo biomoléculas imobilizadas para aplicação no reparo tecidual de queimaduras térmicas de segundo grau. https://repositorio.ufpe.br/handle/123456789/41828.

Sekar, M. P., Budharaju, H., Zennifer, A., Sethuraman, S., Vermeulen, N., Sundaramurthi, D., & Kalaskar, D. M. (2021). Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. Journal of tissue engineering, 12, 20417314211027677. https://doi.org/10.1177/20417314211027677

Takagi, D., Lin, W., Matsumoto, T., Yaginuma, H., Hemmi, N., Hatada, S., & Seo, M. (2019). High-precision three-dimensional inkjet technology for live cell bioprinting. International journal of bioprinting, 5(2), 208. https://doi.org/10.18063/

Vig, K., Chaudhari, A., Tripathi, S., Dixit, S., Sahu, R., Pillai, S., Dennis, V., & Singh, S. (2017). Advances in Skin Regeneration Using Tissue Engineering. International Journal of Molecular Sciences, 18(4), 789. https://www.mdpi.com/1422-0067/18/4/789. https://doi.org/10.3390/ijms18040789ijb.v5i2.208

Zustiak, S. & Leach, J. (2010). Hydrolytically Degradable Poly (Ethylene Glycol) Hydrogel Scaffolds with Tunable Degradation and Mechanical Properties. Biomacromolecules, 11, 5, 1348–1357. https://pubs.acs.org/doi/abs/10.1021/bm100137q.

Published

04/12/2023

How to Cite

FUKUSHIMA, H. G.; THOMAZINI, M. J.; SILVA, M. T. da .; DIAS, N. H. .; TERUYA, S. R. .; GIORGETTI, L. Literature review on hydrogels in 3D skin printing: Applications, challenges and trends. Research, Society and Development, [S. l.], v. 12, n. 13, p. e98121344167, 2023. DOI: 10.33448/rsd-v12i13.44167. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44167. Acesso em: 31 oct. 2024.

Issue

Section

Agrarian and Biological Sciences