Agroindustrial wastes as promising raw materials for obtaining yeast bioproducts - a brief review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4488

Keywords:

Enzymes; Probiotics; Alternative media; Agroindustrial wastes.

Abstract

Yeasts play a fundamental role in nature, and due to their biochemical and physiological versatility, many of them can have their metabolic routes regulated and optimized for the biosynthesis of specific products. In view of this potentiality, new contributions that dedicate to the study of fermentative processes involving yeasts as protagonists, especially for the production of value-added products from lost vegetables and their residues, show importance. Among these products, particularly in this brief review, the production of pectinase and yeast probiotic potential in alternative culture media is mentioned as a way to make these processes more economically and environmentally viable.

References

Agarwal, N., Kamra, D. N., Chaudhary, L. C., Sahoo, A. & Pathak, N. N. (2000). Selection of Saccharomyces cerevisiae strains for use as a microbial feed additive. Letters in Applied Microbiology, 31(4), pp. 270–273. Doi:https://doi.org/10.1046/j.1472-765x.2000.00826.x

Alimardani-Theuil, P., Gainvors-Claisse, A. & Duchiron, F. (2011). Yeasts: An attractive source of pectinases—From gene expression to potential applications: A review. Process Biochemistry, 46(8), p. 1525–1537. Doi:https://doi.org/10.1016/j.procbio.2011.05.010

Almeida, A. F., Dias, K. B., Da Silva, A. N. C., Terrasan, C. R. F., Tauk-Tornisielo, S. M. & Carmona, E. C. (2016). Agroindustrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: Purification, biochemical properties, and its potential for poultry fat hydrolysis. Enzyme Research, (2016). Doi:http://dx.doi.org/10.1155/2016/1353497

Almeida, J. M., Lima, V. A., Giloni-Lima, P. C. & Knob, A. (2015). Passion fruit peel as novel substrate for enhanced β-glucosidases production by Penicillium verruculosum: Potential of the crude extract for biomass hydrolysis. Biomass and Bioenergy, 72, pp. 216–226. Doi:http://dx.doi.org/10.1016/j.biombioe.2014.11.002

Alok, A., Singh, I. D., Singh, S., Kishore, M., Jha, P. C. & Iqubal, M. A. (2017). Probiotics: A new era of biotherapy. Advanced biomedical research, 6(31). Doi: 10.4103/2277-9175.192625

Ametefe, G. D., Dzogbefia, V. P., Kwatia, C. A. F. (2017). Optimal conditions for pectinase production by Saccharomyces cerevisiae (ATCC 52712) in solid state fermentation and its efficacy in orange juice extraction. IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB), 3(6), pp. 78-86. Doi: 10.9790/264X-03067886

Amorim, J. C., Piccoli, R. H. & Duarte, W. F. (2018). Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Research International, 107, pp. 518–527. Doi:https://doi.org/10.1016/j.foodres.2018.02.054

Angulo, M., Reyes-Becerril, M., Cepeda-Palacios, R., Tovar-Ramírez, D., Esteban, M. A. & Angulo, M. (2019). Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats. Applied Microbiology and Biotechnology, 103(5), pp. 2339–2352. Doi:http://link.springer.com/10.1007/s00253-019-09621-5

Araujo, H. W. C. D., Fukushima, K. & Takaki, G. M. C. (2010). Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules, 15(10), pp. 6931–6940. Doi:10.3390/molecules15106931

Arevalo-Villena, M., Fernández, M., López, J., & Briones, A. (2009). Pectinases yeast production using grape skin as carbon source. New Biotechnology, 25, S70–S71. Doi:10.1016/j.nbt.2009.06.312

Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R. & Nyayanit, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 5. Doi:10.3389/fmicb.2014.00697

Banik, A., Mondal, J., Rakshit, S., Ghosh, K., Sha, S. P., Halder, S. K., Ghosh, C. & Mondal, K. C. (2019). Amelioration of cold-induced gastric injury by a yeast probiotic isolated from traditional fermented foods. Journal of Functional Foods, 59, pp. 164–173. Doi:https://linkinghub.elsevier.com/retrieve/pii/S1756464619303020

Bicas, J. L.; Maróstica Jr & M. R.; Pastore, G. M. (Eds). (2016). Biotechnological Production of Natural Ingredients for Food Industry. Bentham Science Publishers.

Bilal, M. & Iqbal, H. M. N. (2019). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector — current status and future trends. Critical Reviews in Food Science and Nutrition 18, pp. 1-15. Doi:https://doi.org/10.1080/10408398.2019.1627284

Binod, P., Palkhiwala, P. & Pandey, A. (2013). Industrial enzymes - Present status and future perspectives for India. Journal of Scientific and Industrial Research, 72(5), pp. 271–286.

Blanco, P., Sieiro, C. & Villa, T.G. (1999). Production of pectic enzymes in yeasts- MiniReview. FEMS Microbiology Letters, 175(1), p. 1-9. Doi:https://doi.org/10.1111/j.1574-6968.1999.tb13595.x

Blum, J., Hoffmann, F. B., Ayub, R. A. & Jung, D. L., Malgarim, M. B. (2008). Uso de cera na conservação pós-colheita do caqui cv. Giombo. Revista Brasileira de Fruticultura, 30(3), pp. 830–833. Doi:https://doi.org/10.1590/S0100-29452008000300046

Bonatsou, S., Karamouza, M., Zoumpopoulou, G., Mavrogonatou, E., Kletsas, D., Papadimitriou, K., Tsakalidou, E., Nychas, G. E. & Panagou, E. Z. (2018). Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. International Journal of Food Microbiology, 271, pp. 48–59. Doi:https://linkinghub.elsevier.com/retrieve/pii/S0168160518300692

Brijwani, K., Oberoi, H. S. & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), pp. 120–128. Doi:https://doi.org/10.1016/j.procbio.2009.08.015

Butt, M. S., Sultan, M. T., Aziz, M., Naz, A., Ahmed, W., Kumar, N. & Imran, M. (2015). Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI Journal, 14, pp. 542–561, Doi:http://www.ncbi.nlm.nih.gov/pubmed/27047315

Cherry, J. R. & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: An update. Current Opinion in Biotechnology, 14(4), pp. 438–443. Doi:10.1016/s0958-1669(03)00099-5

Cho, Y.-J., Kim, D.-H., Jeong, D., Seo, K.-H., Jeong, H. S., Lee, H. G. & Kim, H. (2018). Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. LWT, 90, pp. 535–539, Doi:https://linkinghub.elsevier.com/retrieve/pii/S0023643818300100>.

Cipolatti, E. P., Pinto, M. C. C., Henriques, R. O., Pinto, J. C. C. S., De Castro, A. M., Freire, D. M. G. & Manoel, E. A. (2019). Enzymes in Green Chemistry: The State of the Art in Chemical Transformations. Singh, R. S., Singhania, R. R., Oandey, A. & Larroche, C. (Eds.), Advances in Enzyme Technology (pp. 137-151). Elsevier.

Cipolatti, E. P., Remedi, R. D., Sá, C. S., Rodrigues, A. B., Ramosa, J. M. G. & Burkert, C. A. V., Furlongb, E. B., Burkert, J. F. M. (2019). Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatalysis and Agricultural Biotechnology, 20. Doi:https://doi.org/10.1016/j.bcab.2019.101208

Corrêa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., De Souza, C. G., Polizeli, M. De L., Bracht, A. & Peralte, R. M. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology and Biotechnology, 41(10), pp. 1467–1478. Doi:10.1007/s10295-014-1496-2

Czerucka, D., Piche, T. & Rampal, P. (2007). Review article: Yeast as probiotics- Saccharomyces boulardii. Alimentary Pharmacology and Therapeutics, 26(6), pp. 767–778. Doi:https://doi.org/10.1111/j.1365-2036.2007.03442.x

Da Silva, C. R., Sila, M. L. C., Kamida, H. M., Goes-Neto, A. & Koblitz, M. G. B. (2014). Lytic enzyme production optimization using low-cost substrates and its application in the clarification of xanthan gum culture broth. Food Science & Nutrition, 2(4), pp. 299–307. Doi:10.1002/fsn3.87

Damásio, A. R. L., Maller, A., Da Silva, T. M., Jorge, J. A., Terenzi, H. F. & Polizeli, M. T. L. M. (2011). Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis. Brazilian Archives of Biology and Technology, 54(1), pp. 141–148. Doi:https://doi.org/10.1590/S1516-89132011000100019

De Menezes, T. A., Bispo, A. S., Koblitz, M. G. B., Vandenberghe, L. P., Kamida, H. M. & Goes-Neto, A. (2016). Production of basidiomata and ligninolytic enzymes by the lingzhi or reishi medicinal mushroom, Ganoderma lucidum (agaricomycetes), in licuri (Syagrus coronata) wastes in Brazil. International Journal of Medicinal Mushrooms, 18(12), pp. 1141–1149. Doi:10.1615/IntJMedMushrooms.v18.i12.90

De Souza, P. M., Bittencourt, M. L. S., Caprara, C. C., De Almeida, R. P. C., Silveira, D., Fonseca, Y. M., Filho, E. X. F., Júnir, A. P. & Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46(2), pp. 337–346. Doi:https://doi.org/10.1590/S1517-838246220140359

Dhillon, G. S. & Kaur, S. (Eds.). (2016). Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic Press.

Di Cagno, R., Filannino, P. & Gobbetti,, M. (Eds.). (2016). Novel Fermented Fruit and Vegetable-Based Products. Springer, Cham.

Do Nascimento Filho, W. B. & Franco, C. R. (2015). Potential assessment of waste produced through the agro-industrial processing in Brazil. Revista Virtual de Quimica, 7(6), pp. 1968–1987. Doi:10.5935/1984-6835.20150116

Dondini, L. & Sansavini, S. (Eds.). (2020). Handbook of plant breeding. Springer.

Doty, S. L., Stale, J. T., Su, M., Vajzovic, A., Bura, R., Redman, R. & Khan, Z. (2016). Endophytic yeast strains, methods for ethanol and xylitol production, methods for biological nitrogen fixation, and a genetic sorce for improvement of industrial strains. WO2010105226A2.

Dursun, D. & Dalgıç, A. C. (2016). Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatalysis and Agricultural Biotechnology, 7, pp. 1–6. Doi:http://dx.doi.org/10.1016/j.bcab.2016.04.006

EL-BAZ, A. F., El-Enshasy, H. A., Shetaia, Y. M., Mahrous, H., Othman, N. Z., Yousef & A. E. (2018). Semi-industrial scale production of a new yeast with probiotic traits, Cryptococcus sp. YMHS, isolated from the red sea. Probiotics and Antimicrobial Proteins, 10(1), pp. 77–88. Doi:http://link.springer.com/10.1007/s12602-017-9291-9

Eschstruth, A. & Divol, B. (2011). Comparative characterization of endopolygalacturonase (Pgu1) from Saccharomyces cerevisiae and Saccharomyces paradoxus under winemaking conditions. Applied Microbiology and Biotechnology, 91(3):623-34. Doi:10.1007/s00253-011-3238-y

FAI, A. E. C., Da Silva, J. B., De Andrade, C. J., Bution, M. L. & Pastore, G. M. (2014). Production of prebiotic galactooligosaccharides from lactose by Pseudozyma tsukubaensis and Pichia kluyveri. Biocatalysis and Agricultural Biotechnology, 3(4), pp. 343–350. Doi:http://dx.doi.org/10.1016/j.bcab.2014.04.005

Fai, A. E. C., Simiqueli, A. P. S., Ghiselli, G. & Pastores, G. M. (2015a). Sequential optimization approach for prebiotic galactooligosaccharides synthesis by Pseudozyma tsukubaensis and Pichia kluyveri. LWT - Food Science and Technology, 63(2), pp. 1214–1219. Doi:https://doi.org/10.1016/j.lwt.2015.04.064

Fai, A. E. C., Simiqueli, A. P. S., De Andrade, C. J., Ghiselli, G. & Pastore, G. M. (2015b). Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: An integrated process. Biocatalysis and Agricultural Biotechnology, 4(4), pp. 535–542. Doi:http://dx.doi.org/10.1016/j.bcab.2015.10.001

Fai, A. E. C., Stamford, T. C., Stamford-Arnaud, T. M., Santa-Cruz, P. D., Da Silva, M. C., Campos-Takaki, G. M. & Stamford, T. L. (2011). Physico-chemical characteristics and functional properties of chitin and chitosan produced by mucor circinelloides using yam bean as substrate. Molecules, 6(8), pp. 7143–7154. Doi:10.3390/molecules16087143

Fang, X., Yano, S., Inoue, H. & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107(3), pp. 256–261. Doi:http://dx.doi.org/10.1016/j.jbiosc.2008.11.022

FAOSTAT/FAO - Food and Agriculture Organization, FAO 2019. (2019). Acessado em 6 de Janeiro, em http://www.fao.org/faostat/en/#data/QC/visualize

FAO- Food and Agriculture Organization of the United Nations- FAOSTAT Statistical Database Rome FAO 1997. (1997). Acessado em 6 de Abril, em https://search.library.wisc.edu/catalog/999890171702121

FAO- Food and Agriculture Organization of the United Nations. Food Loss and Food Waste: Causes and Solutions. Food Loss and Food Waste: Causes and Solutions, p. 1–29. (2011). Acessado em 6 de Abril, em https://www.elgaronline.com/view/9781788975384/9781788975384.xml

FAO/WHO - Food and Agriculture Organization of the United Nations / World Health Organization. (2001). Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Córdoba, p. 1-34. Acessado em 6 de Abril, em ftp://ftp.fao.org/es/esn/food/probioreport_ en.pdf

Fernández-Pacheco, P., Cueva, C., Arévalo-Villena, M., Moreno-Arribas, M. V. & Briones Pérez, A. (2019). Saccharomyces cerevisiae and Hanseniaspora osmophila strains as yeast active cultures for potential probiotic applications. Food & Function, 10(8), pp. 4924–4931. Doi:http://xlink.rsc.org/?DOI=C9FO00732F

Fontana, R. C. & Silveira, M. M. (2012). Influence of pectin, glucose, and ph on the production of endo- and exopolygalacturonase by Aspergillus oryzae in liquid medium. Brazilian Journal of Chemical Engineering, 29(4), pp. 683–690. Doi:https://doi.org/10.1590/S0104-66322012000400001

Forster-Carbeiro, T., Berni, M. D., Dorileo, I. L. & Rostagno, M. A.(2013). Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resources, Conservation and Recycling, 77, pp. 78-88. Doi:https://doi.org/10.1016/j.resconrec.2013.05.007

Gainvors, A., Nedjaoum, N., Gognies, S., Muzart, M., Nedjma, M. & Belarbi, A. (2000). Purification and characterization of acidic endo-polygalacturonase encoded by the PGL1-1 gene from Saccharomyces cerevisiae. FEMS Microbiology Letters, 183(1), pp. 131-135. Doi:https://doi.org/10.1111/j.1574-6968.2000.tb08946.x

Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J. & Mahajan, R. (2016). Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech, 6(1), pp.47. Doi:10.1007/s13205-016-0371-4

Giordani, E., Doumett, S., Nin, S. & Del Bubba, M. (2011). Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): A review of analytical methods and current knowledge of fruit composition and health benefits. Food Research International, 44(7), pp. 1752–1767. Doi:http://dx.doi.org/10.1016/j.foodres.2011.01.036

Gnaneshwar Goud, K,; Chaitanya, K. & Reddy, G. (2013). Enhanced production of β-d-fructofuranosidase by Saccharomyces cerevisiae using agro-industrial wastes as substrates. Biocatalysis and Agricultural Biotechnology, 2(4), pp. 385–392. Doi:http://dx.doi.org/10.1016/j.bcab.2013.08.001

Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., De Paula, J. A., Ramakrishna, B., Shanahan, F., Thomson, A. & Mair, A. L. (2011). World gastroenterology organisation global guidelines: Probiotics and prebiotics october 2011. Journal of Clinical Gastroenterology, 46(6), pp. 468–481.

Guerrand, D. Economics of food and feed enzymes: Status and prospectives. (2018). Nunes, C. S. & Kumar, V. (Eds.), Enzymes in Human and Animal Nutrition (pp. 487-514). Academic Press.

Guluarte, C., Reyes-Becerril, M., Gonzalez-Silvera, D., Cuesta, A., Angulo, C. & Esteban, N. A. (2019). Probiotic properties and fatty acid composition of the yeast Kluyveromyces lactis M3. In vivo immunomodulatory activities in gilthead seabream (Sparus aurata). Fish & Shellfish Immunology, 94, pp. 389–397. Doi:https://linkinghub.elsevier.com/retrieve/pii/S1050464819309088>.

Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K. Chauhan & B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemitry. 38(11), p. 1599-1616. Doi:10.1016/S0032-9592(03)00053-0

Gupta, V. K., Sharma, G. D., Tuohy, M. G., Gaur, R. (Eds.). (2016). The handbook of microbial bioresources. CABI.

Gut, A. M., Vasiljevic, T., Yeager, T. & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58. Doi:https://linkinghub.elsevier.com/retrieve/pii/S1756464619302300

Hafeez, Z., Cakir-Kiefer, C., Roux, E., Perrin, C., Miclo, L. & Dary-Mourot, A. (2014). Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Research Internationa. 63, pp. 71–80. Doi:http://dx.doi.org/10.1016/j.foodres.2014.06.002

Haile, M. & Kang, W. H.. (2019) Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms, 7 (10), pp. 401. Doi:10.3390/microorganisms7100401

Hu, X. Q., Liu, Q., Hu, J. P., Zhou, J. J., Zhang, X., Peng, S. Y., Peng, L. J., Wang, X. D. (2018). Identification and characterization of probiotic yeast isolated from digestive tract of ducks. Poultry Science, 97(8), pp. 2902–2908. Doi:https://academic.oup.com/ps/article/97/8/2902/4995765

Husseiny, S. M., Abdelhafez, A. A., Ali, A. A.-A. & Sand, H. M. (2017). Optimization of b-carotene production from Rhodotorula glutinis ATCC 4054 growing on agro-industrial substrate using Plackett–Burman design. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, pp. 1637-1646. Doi:10.1007/s40011-017-0908-2

Imandi, S. B., Karanam, S. K., Garapati, H. R. (2013). Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Brazilian Journal of Microbiology, 921, pp. 915–921, 2013.

Ittah, Y. (1993) Sugar content changes in persimmon fruits (Diospyros kaki L.) during artificial ripening with CO2: a possible connection to deastringency mechanisms. Food Chemistry, 48(1), pp. 25–29. Doi:https://doi.org/10.1016/0308-8146(93)90216-3

Jaramillo, P. M. D., Andreaus, J., Neto, G. P. S., Castro, C. F. S. Filho, E. X. F. (2015). The characterization of a pectin-degrading enzyme from Aspergillus oryzae grown on passion fruit peel as the carbon source and the evaluation of its potential for industrial applications. Biocatalysis and Biotransformation, 33(5–6), pp. 310–322. Doi: https://doi.org/10.3109/10242422.2016.1168817

Jiménez‐Peñalver, P., Koh, A., Gross, R., Gea, T. & Font, X. (2019). Biosurfactants from waste : Structures and interfacial properties of Sophorolipids produced from a residual oil cake. Doi:https://doi.org/10.1002/jsde.12366

Kashyap, D. R., Chandra, S. & Tewari, R. (2000). Production, purification and characterization of pectinase from a Bacillus sp. DT7. World Journal of Microbiology and Biotechnology, 16(3), pp. 277–282. Doi:https://doi.org/10.1023/A:1008902107929

Kaur, G., Kumar, S. & Satyanarayana, T. (2004). Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresource Technology, 94(3), pp. 239–243. Doi:10.1016/j.biortech.2003.05.003

Kavanagh, K. (Ed.) (2017). Fungi: biology and applications. John Wiley & Sons.

Klein-Marcuschamer, D., Oleskowicz‐Popiel, P., Simmons, B. A. & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109(4), pp. 1083–1087. Doi:https://doi.org/10.1002/bit.24370

Klein, S. M., Elmer, G. W., McFarland, L. V., Surawicz, C. M. &Levy, R. H. (1993). Recovery and Elimination of the Biotherapeutic Agent, Saccharomyces boulardii, in Healthy Human Volunteers. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, 10(11), pp. 1615-1629. Doi: 10.1023/a:1018924820333

Korumilli,T., Mishra, S. & Korukonda, J. R. (2020). Production of astaxanthin by Xanthophyllomyces dendrorhous on fruit waste extract and optimization of key parameters using Taguchi method. Journal of Biochemistry and Technology, 11(1): pp. 25-31.

Koutinas, A. A., Vlysidis, A., Pleissner, D., Kopsahelis, N., Garcia, I. L., Kookos, I. K., Papanikolaou, S., Kwan, T. H. & Lin, C. S. K. (2014). Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews, 43(8), pp. 2587–2627. Doi:10.1039/c3cs60293a

Kreger-VanN Rij, N. J. W. (Ed.). (1984). The yeasts: a taxonomic study. Elsevier.

Kurtzman, C., Fell, J. W. & Boekhout, T. (Eds.). (2011). The yeasts: a taxonomic study. Elsevier.

Lu, Z., He, F., Shi, Y., Lu, M. & Yu, L. (2009). Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresource Technology, 101(10), pp. 3642–3648. Doi:http://dx.doi.org/10.1016/j.biortech.2009.12.119

Ma, Y.-X., Li, L.Y., Li, M., Chen, W., Bao, P.-Y., Yu, Z.-C. & Chang, Y.-Q. (2019). Effects of dietary probiotic yeast on growth parameters in juvenile sea cucumber, Apostichopus japonicus. Aquaculture, 499, pp. 203–211. Doi:https://linkinghub.elsevier.com/retrieve/pii/S0044848618308780>.

Maki, M. L., Broere, M., Leung, K. T. & Qin, W. (2011). Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. International Journal of Biochemistry and Molecular Biology, 2(2), pp. 146-154.

Manimala, M. R. A. & Murugesan, R. (2017). Studies on carotenoid pigment production by yeast Rhodotorula mucilaginosa using cheap materials of agro-industrial origin. The Pharma Innovation Journal, 6(1): 80-82.

Marti, M. E., Colonna, W. J., Reznik, G., Pynn, M., Jarrell, K., Lamsal, B. & Glatz, C. E.. Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. (2015). Biochemical Engineering Journal, 95, pp. 48–55, 2015. Doi:http://dx.doi.org/10.1016/j.bej.2014.11.011

Martinuz, A., Zewdu, G., Ludwig, N., Grundler,, F. M. W., Sikora, R. A. & Schouten, A. (2015). The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta, 241(4), pp. 1015–1025. Doi:10.1007/s00425-014-2237-5

Martos, M.A., Zubreski, E.R., Garro, O.A. & Hours, R.A. (2013). Production of pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels. Biotechnol Research International, 2013. Doi:https://doi.org/10.1155/2013/435154

Matheus, J.R.V., Andrade, C.J., Miyahira, R.F., Fai, A.E.C. (2020). Persimmon (Diospyros kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products – A Review, Food Reviews International, 2020. Doi:10.1080/87559129.2020.1733597

Mechmeche, M., Kachouri, F., Ksontini, H. & Hamdi, M. (2017). Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. Food Biotechnology, 31(2), pp. 94–113, 2017. Doi:https://doi.org/10.1080/08905436.2017.1302888

Mehta, P. K. & Sehgal, S. (Eds.). (2019). Microbial Enzymes in Food Processing. Springer, Cham

Meneghetti,, C. C. & Domingues, J. L. (2008). Características nutricionais e uso de subprodutos da agroindústria na alimentação de bovinos. Revista Eletrônica Nutrime, 5(2), pp. 512-536.

Mirabella, N.; Castellani, V. & Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, pp. 28–41. Doi:http://dx.doi.org/10.1016/j.jclepro.2013.10.051

Moharib, S. A., El-Sayed, S. T. & Jwanny, E. W. (2000). Evaluation of enzymes produced from yeast. Nahrung, 44(1), pp. 47–51. Doi:10.1002/(SICI)1521-3803(20000101)44:1<47::AID-FOOD47>3.0.CO;2-K

Moharib, S. A., El-Sayed, S. T., & Jwanny, E. W. (2000). Evaluation of enzymes produced from yeast. Nahrung, 44(1), pp. 47–51. Doi:10.1002/(sici)1521-3803(20000101)44:1<47::aid-food47>3.0.co;2-k

Moreira, M. D., Melo, M. M., Coimbra, J. M., Dos Reis, K. C., Schwan, R. F. & Silva, C. F. (2018). Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Management, 82, pp. 93–99. Doi:https://doi.org/10.1016/j.wasman.2018.10.017

Newmbold, C. J., Wallace, R. J., Chen, X. B. & McIntosh, F. M. (1995). Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. Journal of animal science, 73(6), p. 1811–1818. Doi:10.2527/1995.7361811x

Nogueira, T. B. G., a Silva, T. P. M., de Araújo Luiz, D., de Andrade, C. J., de Andrade, L. M., Ferreira, M. S. L., & Fai, A. E. C. (2020). Fruits and vegetable-processing waste: a case study in two markets at Rio de Janeiro, RJ, Brazil. Environmental Science and Pollution Research. Doi:10.1007/s11356-020-08244-y

NOVOZYMES. The Novozymes Report 2014. (2014). Acessado em 6 de Abril, em https://s21.q4cdn.com/655485906/files/doc_financials/annual_english/NovozymesReport2014.pdf

NOVOZYMES. The Novozymes Report 2018. (2018). Acessado em 6 de Abril, em https://report2018.novozymes.com

Oliveira, D. A., Angonese, M., Gomes, C. & Ferreira, S. S. (2016). Valorization of passion fruit (Passiflora edulis sp.) by-products: Sustainable recovery and biological activities. Journal of Supercritical Fluids, 111, pp. 55–62. Doi:http://dx.doi.org/10.1016/j.supflu.2016.01.010

Pacifico, L., Farahmand, F., Najafi, M. & Shoaran, M. (2014). Probiotics for the treatment of Helicobacter pylori infection in children. World Journal of Gastroenterology, 20(3), pp. 673–683. Doi:10.3748/wjg.v20.i3.673

Pandey, A., Negi, S. & Soccol, C. R. (Eds.). (2016). Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier.

Paulino, B. N., Pessôa, M. G., Molina, G., Kaupert Neto, A. A., Oliveira, J. V. C., Mano, M. C. R. & Pastore, G. M. (2017). Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Applied Microbiology and Biotechnology, 101(21), pp. 7789–7809. Doi:10.1007/s00253-017-8516-x

Pereira, A. S., Fontes-Sant’Ana, G. C. & Amaral, P. F. F. (2019). Mango agro-industrial wastes for lipase productionfrom Yarrowia lipolytica and the potential of thefermented solid as a biocatalyst. Food and Bioproducts Processing, 115, pp. 68–77. Doi:https://doi.org/10.1016/j.fbp.2019.02.002

Pineton de Chambrun, G., Neut, C., Chau, A., Cazaubiel, M., Pelerin, F., Justen, P. & Desreumaux, P. (2015). A randomized clinical trial of Saccharomyces cerevisiae versus placebo in the irritable bowel syndrome. Digestive and Liver Disease, 47(2), pp. 119–124,. Doi:http://dx.doi.org/10.1016/j.dld.2014.11.007

Poondla, V., Bandikari, R., Subramanyam, R., & Reddy Obulam, V. S. (2015). Low temperature active pectinases production by Saccharomyces cerevisiae isolate and their characterization. Biocatalysis and Agricultural Biotechnology, 4(1), pp. 70–76. Doi:10.1016/j.bcab.2014.09.008

Poondla, V., Yannam, S. K., Gummadi, S. N., Subramanyam, R. & Reddy Obulam, V. S. (2016). Enhanced production of pectinase by Saccharomyces cerevisiae isolate using fruit and agro-industrial wastes: Its application in fruit and fiber processing. Biocatalysis and Agricultural Biotechnology, 6, 40–50. Doi:10.1016/j.bcab.2016.02.007

Prabina, B. J., Kumutha, K., Anandham, R. & Durga, P. (2019). Isolation and characterization of multifunctional yeast as plant probiotics for better crop nutrition in pulses. International Journal of Current Microbiology and Applied Sciences, 8(1), pp. 2711–2718. Doi:https://www.ijcmas.com/abstractview.php?ID=11673&vol=8-1-2019&SNo=286

Pylro, V. S., Roesch, L. F. W., Ortega, J. M., Do Amaral, A. M., Tótola, M. R., Hirsch, P. R., Rosado, A. S., Góes-Neto, A., da Silva, A. L. C., Rosa, C. A., Morais, D. K., Andreote, F. D., Duarte, G. F., de Melo, I. S., Seldin, S., Lambais, M. R., Hungria, M., Peixoto, R. S., Kruger, R. H., Tsai & S. M., Azevedo, V. (2014). Brazilian Microbiome Project: Revealing the Unexplored Microbial Diversity-Challenges and Prospects. Microbial Ecology, 67(2), pp. 237–241. Doi:10.1007/s00248-013-0302-4

Sandri, I. G., Fontana, R. C. & Moura da Silveira, M. (2015). Influence of pH and temperature on the production of polygalacturonases by Aspergillus fumigatus. LWT - Food Science and Technology, 61(2), pp. 430–436. Doi:http://dx.doi.org/10.1016/j.lwt.2014.12.004>.

Satyaranayana, T. & Kunze, G. (Eds.). (2009). Yeast biotechnology: diversity and applications. Springer.

Sazawal, S., Hiremath, G., Dhingra, U., Malik, P., Deb, S. & Black, R. E. (2006). Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infectious Diseases, 6(6), pp. 374–382. Doi:10.1016/S1473-3099(06)70495-9

Schlander, M., Distler, U., Tenzer, S., Thines, E. & Claus, H. (2017). Purification and properties of yeast proteases secreted by Wickerhamomyces anomalus 227 and Metschnikovia pulcherrima 446 during growth in a white grape juice. Fermentation, 3(1). Doi:https://doi.org/10.3390/fermentation3010002

Seixas, F. L., Fukuda, D. L., Turbiani, F. R. B., Garcia, P. S., Petkowicz, C. L. de O., Jagadevan, S. & Gimenes, M. L. (2014). Extraction of pectin from passion fruit peel (Passiflora edulis f.flavicarpa) by microwave-induced heating. Food Hydrocolloids, 38, pp. 186–192. Doi:10.1016/j.foodhyd.2013.12.001

Serrat, M., Bermúdez, R.C. & Villa, T.G. (2002). Production, purification and characterization of a polygalacturonase from a new strain of Kluyveromyces marxianus isolated from coffee wet-processing wastewater. Applied Biochemistry and Biotechnology, 97, pp. 193-208. Doi:10.1385/abab:97:3:193

Sharma, A., Singh, R. S., Gupta, G., Ahmad, T. & Kaur, B. (2019). Metabolic engineering of enzyme-regulated bioprocesses. Singh, R. S., Singhania, R. R., Oandey, A. & Larroche, C. (Eds.), Advances in Enzyme Technology (pp. 293-323). Elsevier.

Silva, E. G., Borges, M. D. F., Medina, C., Piccoli, R. H. & Schwan, R. F. (2005). Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Research 5(9), pp. 859-865. Doi:10.1016/j.femsyr.2005.02.006

Souza, P. G., Santos, S. , Nogueira, T. B. B., Santana, I., Fai, A. E. C. (2020). Avaliação de desperdício em restaurantes comerciais do tipo self-service total na Universidade do Estado do Rio de Janeiro (UERJ). Research, Society and Development 9 (6). Doi: http://dx.doi.org/10.33448/rsd-v9i6.3605

Srivastava, R. K. (2019). Yeast species mediated bioprocesses and bio-products for biotechnological application. Journal of Biotechnology and Biomedical Science, 2(1), pp. 1–11. Doi:https://openaccesspub.org/jbbs/article/1048

TACO, N. (2011). Tabela brasileira de composição de alimentos. Revista Ampliada NEPA UNICAMP, p. 161.

Tapre, A. R., & Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2), pp. 447–453.

Tiago, F. C. P., Martins, F. S., Rosa, C. A., Nardi, R. M. D,. Cara, D. C. & Nicoli, J. R. (2009). Physiological characterization of non-Saccharomyces yeasts from agro-industrial and environmental origins with possible probiotic function. World Journal of Microbiology and Biotechnology, 25(4), pp. 657–666. Doi:https://doi.org/10.1007/s11274-008-9934-9

Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J. & Liu, Y. (2014). Bioconversion of food waste to energy: A review. Fuel, 134, pp. 389–399. Doi:https://doi.org/10.1016/j.fuel.2014.05.074

Uenojo, M. & Pastore, G. M. (2007). Pectinases: Aplicações industriais e perspectivas. Quimica Nova, 30(2), pp. 388–394. Doi:https://doi.org/10.1590/S0100-40422007000200028

Urnau, L., Colet, R., Reato, P. T., Burkert, J. F. M., Rodrigues, E., Gomes, R., Jacques, R. A., Valduga, E. & Steffens, C. (2019). Use of low-cost agro-industrial substrate to obtain carotenoids from Phaffia rhodozyma in a bioreactor. Industrial Biotechnology, 15(1). Doi: 10.1089/ind.2018.0027

Ventura-Sobrevilla, J., Boone-Villa, D., Rodriguez, R., Martinez-Hernandez, J. L. & Aguilar, C. N. Microbial biosynthesis of enzymes for food applications. Yada, R. Y. (Ed.) Improving and tailoring enzymes for food quality and functionality (pp.85-99). Elsevier.

Venturini Filho, W. G. & Mendes, B. do P. (2004). Fermentação alcoólica de raízes tropicais. Cultura de tuberosas amiláceas latino americanas. Cereda, M.P. & Vilpoux, O.F. (Eds.). Tecnologia, usos e potencialidades de tuberosas amiláceas Latino Americanas, (pp. 530–575). Embrapa.

Wood, I. P., Cook, N. M., Wilson, D. R., Ryden, P., Robertson, J. A. & Waldron, K. W. (2016) Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chemistry, 198, pp. 125–131. Doi:http://dx.doi.org/10.1016/j.foodchem.2015.09.108

Zheng, G. H. & Sugiura, A. (1990). Changes in sugar composition in relation to invertase activity in the growth and ripening of persimmon (Diospyros kaki) fruits. Journal of the Japanese Society for Horticultural Science, 59(2), pp. 281–287. Doi:https://www.jstage.jst.go.jp/article/jjshs1925/59/2/59_2_281/_article

Zullo, B. A. & Ciafardini, G. Evaluation of physiological properties of yeast strains isolated from olive oil and their in vitro probiotic trait. (2018). Food Microbiology, 78, pp. 179–187. Doi: https://linkinghub.elsevier.com/retrieve/pii/S074000201830306X

Żymańczyk-Duda, E., Brzezińska-Rodak, M., Klimek-Ochab, M., Duda, M & Zerka, A. (2014). Yeast as a versatile tool in biotechnology yeast- Industrial applications Doi: 10.5772/intechopen.70130

Published

30/05/2020

How to Cite

TAKEYAMA, M. M.; KAWAGUTI, H. Y.; KOBLITZ, M. G. B.; FAI, A. E. C. Agroindustrial wastes as promising raw materials for obtaining yeast bioproducts - a brief review. Research, Society and Development, [S. l.], v. 9, n. 7, p. e588974488, 2020. DOI: 10.33448/rsd-v9i7.4488. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4488. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences