In silico analysis of the protein-protein interaction of the SARS-CoV-2 spike protein

Authors

DOI:

https://doi.org/10.33448/rsd-v13i6.46139

Keywords:

SARS-CoV-2; T cells; B cells; Epitopes; Protein-protein interaction.

Abstract

The pandemic caused by the SARS-CoV-2 virus has represented a global challenge with a significant impact on public health since its emergence in 2019. Understanding the interactions between this virus and the human immune system is essential for the development of new strategies more effective therapies and diagnoses. This study aimed to predict epitopes for SARS-CoV-2 T and B cells, as well as evaluate the interaction of the spike protein with other viral proteins, using bioinformatics methods. SARS-CoV-2 protein sequences were collected from UniProt. Epitopes for T cells were predicted in silico using specific HLA alleles from the Bahia population. Epitopes for B cells were predicted using the IEDB server with multiple methods based on amino acid features. Protein-protein interaction was analyzed using the STRING database. The result is 10,671 peptides related to various SARS-CoV-2 viral proteins, including the spike, essential for the infection and pathogenesis of COVID-19. In addition to spike, proteins such as ORF3a, ORF7a, and ORF8 showed significant immunogenic potential. Protein-protein interaction analysis revealed that proteases such as TMPRSS2 and TMPRSS11D are crucial for viral entry and are potential therapeutic targets. This study expands the understanding of the molecular interactions of SARS-CoV-2, highlighting new therapeutic targets and clinical complications associated with COVID-19. The results provide valuable insights for the development of targeted therapeutic strategies and improved diagnostics, contributing to the mitigation of the global pandemic.

References

Arabi-Jeshvaghani, F., Javadi‐Zarnaghi, F., & Ganjalikhany, M. R. (2023). Analysis of critical protein–protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides. Scientific Reports, 13(1), 350.

Bar-On, Y M, Flamholz, A., Phillips, R., & Milo, R. (2020). SARS-CoV-2 (COVID-19) by the numbers. eLife, 9, e57309.

Bittmann, S., Weissenstein, A., Moschüring-Alieva, E., Bittmann, L., Luchter, E., & Villalon, G. (2020). The role of TMPRSS2 and TMPRSS2-inhibitors in cell entry mechanism of COVID-19. Journal of Regenerative Biology and Medicine, 2(3), 1-3.

Borza, R., Salgado-Polo, F., Moolenaar, W H., & Perrakis, A. (2022). Structure and function of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family: Tidying up diversity. The Journal of Biological Chemistry, 298(2), 101526.

Bowe, B., Xie, Y., & Al-Aly, Z. (2023). Postacute sequelae of COVID-19 at 2 years. Nature Medicine, 29, 2347–2357.

Bugge, T H, Antalis, T M, & Wu, Q. (2009). Type II transmembrane serine proteases. Journal of Biological Chemistry, 284(35), 23177-23181.

Bussani, R., Zentilin, L., Correa, R., Colliva, A., Silvestri, F., Zacchigna, S., & Giacca, M. (2023). Persistent SARS‐CoV‐2 infection in patients seemingly recovered from COVID‐19. The Journal of Pathology, 259(3), 254-263.

Chakraborty, C., Sharma, A R., Bhattacharya, M., Sharma, G., & Lee, S S. (2021). Immunoinformatics approach for the identification and characterization of T cell and B cell epitopes towards the peptide-based vaccine against SARS-CoV-2. Archives of Medical Research, 52(4), 362-370.

Chou, P. Y., & Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology, 47, 45–148.

Díaz-Castrillón, F. J., & Toro-Montoya, A I. (2020). SARS-CoV-2/COVID-19: el virus, la enfermedad y la pandemia. Medicina & Laboratorio, 24(3), 183-205.

Devi, Y D, Goswami, H B, Konwar, S., Doley, C., Dolley, A., Devi, A., & Namsa, N D. (2021). Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLOS ONE, 16(11), e0258645.

Disser, N P, De Micheli, A J, Schonk, M M, Konnaris, M A, Piacentini, A N, Edon, D L, Toresdahl, B G, Rodeo, S A, Casey, EK, & Mendias, CL. (2020). Musculoskeletal consequences of COVID-19. Journal of Bone and Joint Surgery, 102(14), 1197-1204.

Eckerle, I., & Meyer, B. (2020). SARS-CoV-2 seroprevalence in COVID-19 hotspots. The Lancet, 396(10250), 514-515.

Emini, E A, Hughes, J V, Perlow, D S, & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55(3), 836–839.

Fang, Z., Marshall, C B, Yin, J C, Mazhab-Jafari, M T, Gasmi-Seabrook, G M, Smith, M J, Nishikawa, T., Xu, Y., Neel, B G, & Ikura, M. (2016). Biochemical classification of disease-associated mutants of RAS-like protein expressed in many tissues (RIT1). Journal of Biological Chemistry, 291(30), 15641-15652.

Fathollahi, M., Motamedi, H., Hossainpour, H., Abiri, R., Shahlaei, M., Moradi, S., & Alvandi, A. (2023). Designing a novel multi-epitopes pan-vaccine against SARS-CoV-2 and seasonal influenza: In silico and immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 1-24.

Grifoni, A., Sidney, J., Vita, R., Peters, B., Crotty, S., Weiskopf, D., & Sette, A. (2021). SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host & Microbe, 29(7), 1076-1092.

Han, Q., Zheng, B., Daines, L., & Sheikh, A. (2022). Long-term sequelae of COVID-19: A systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens, 11(2), 269.

Hook, V., Funkelstein, L., Wegrzyn, J., Bark, S., Kindy, M., & Hook, G. (2012). Cysteine cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. Biochimica et Biophysica Acta, 1824(1), 89-104

Huseynov, A., Akin, I., Duerschmied, D., & Scharf, R E. (2023). Cardiac arrhythmias and COVID-19: A scientific statement from the German Cardiac Society (DGK) Working Group on arrhythmias. Heart, 109(5), 369-376.

Jespersen, M C, Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29.

Kampf, G., Brüggemann, Y., Kaba, H E J, Steinmann, J., Pfaender, S., Scheithauer, S., & Steinmann, E. (2020). Potential sources, modes of transmission and effectiveness of prevention measures against SARS-CoV-2. Journal of Hospital Infection, 106(4), 678-697.

Karplus, P. A., & Schulz, G. E. (1985). Predição da flexibilidade de cadeia em proteínas - Uma ferramenta para a seleção de antígenos peptídicos. Naturwissenschaften, 72, 212-213.

Karplus, P A., & Schulz, G E. (1985). Prediction of chain flexibility in proteins: A tool for the selection of peptide antigens. Naturwissenschaften, 72(4), 212-213.

Kishimoto, M., Uemura, K., Sanaki, T., Sato, A., Hall, W W, Kariwa, H., Orba, Y., Sawa, H., & Sasaki, M. (2021). TMPRSS11D and TMPRSS13 activate the SARS-CoV-2 spike protein. Viruses, 13(3), 384.

Kolaskar, A S, & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1-2), 172–174.

Kumar, P., Kumar, A., Garg, N., & Giri, R. (2023). An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. Journal of Biomolecular Structure and Dynamics, 41(3), 1062-1071.

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., & Moore, H. F. (2013). The genotype-tissue expression (GTEx) project. Nature Genetics, 45(6), 580-585.

Majra, D., Benson, J., Pitts, J., & Stebbing, J. (2021). SARS-CoV-2 (COVID-19) superspreader events. Journal of Infection, 82(1), 36-40.

Mehandru, S., & Merad, M. (2022). Pathological sequelae of long-haul COVID. Nature Immunology, 23, 194–202.

Miao, G., Zhao, H., Li, Y., ... & Zhong, Q. (2021). ORF3a of the COVID-19 SARS-CoV-2 virus blocks the HOPS complex-mediated assembly of the SNARE complex required for the formation of autolysosomes. Developmental Cell, 56(4), 427-442.e5.

Mukherjee, S., Tworowski, D., Detroja, R., & Frenkel-Morgenstern, M. (2020). Immunoinformatics and structural analysis for identification of immunodominant epitopes in SARS-CoV-2 as potential vaccine targets. Vaccines, 8(2), 290.

Navish, A A, & Uthayakumar, R. (2023). An exploration on the topologies of SARS-CoV-2/human protein-protein interaction network. Journal of Biomolecular Structure and Dynamics, 41(13), 6313-6325.

Ozger, Z B. (2023). A robust protein language model for SARS-CoV-2 protein–protein interaction network prediction. Artificial Intelligence in Medicine, 142, 102574.

Parker, J M, Guo, D., & Hodges, R S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25(19), 5425–5432.

Pellequer, J L, Westhof, E., & Van Regenmortel, M H. (1993). Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunology Letters, 36(1), 83–99.

Saha, S A, Russo, A M, Chung, M K, Deering, T F, Lakkireddy, D., & Gopinathannair, R. (2022). COVID-19 and cardiac arrhythmias: A contemporary review. Current Treatment Options in Cardiovascular Medicine, 24(6), 87-107.

Shomuradova, A S, Vagida, M S, Sheetikov, S A, Zornikova, K V, Kiryukhin, D., Titov, A., & Efimov, G A. (2020). SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors. Immunity, 53(6), 1245-1257.

Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., & Gallagher, T. (2011). A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. Journal of Virology, 85(2), 873-882.

Szabo, R., & Bugge, T H. (2008). Type II transmembrane serine proteases in development and disease. The International Journal of Biochemistry & Cell Biology, 40(6-7), 1297-1316.

Tharappel, A M, Samrat, S K, Li, Z., & Li, H. (2020). Targeting crucial host factors of SARS-CoV-2. ACS Infectious Diseases, 6(11), 2844-2865.

Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: More than scavengers. Biochimica et Biophysica Acta, 1477(1-2), 98–111.

Weingarten-Gabbay, S., Chen, D Y, Sarkizova, S., Taylor, H B, Gentili, M., Hernandez, G M, & Sabeti, P C. (2024). The HLA-II immunopeptidome of SARS-CoV-2. Cell Reports, 43(1).

Yarmarkovich, M., Warrington, J. M., Farrel, A., & Maris, J. M. (2020). Identification of SARS-CoV-2 vaccine epitopes predicted to induce long-term population-scale immunity. Cell Reports Medicine, 1(3).

Zhou, Y., Liu, Y., Gupta, S., Paramo, M I, Hou, Y., Mao, C., & Yu, H. (2023). A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nature Biotechnology, 41(1), 128-139.

Downloads

Published

21/06/2024

How to Cite

MARQUES, A. S. .; GONDIM, T. de M. .; SOUSA, F. S. C. de .; FARIAS, A. P. F. de .; ANDRADE, B. S. .; TRINDADE, S. C. .; ROCHA FILHO, J. T. R. da .; MEYER, R. . In silico analysis of the protein-protein interaction of the SARS-CoV-2 spike protein. Research, Society and Development, [S. l.], v. 13, n. 6, p. e12113646139, 2024. DOI: 10.33448/rsd-v13i6.46139. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46139. Acesso em: 17 jul. 2024.

Issue

Section

Health Sciences