Mercury in liver and feathers of some birds of prey in Rio de Janeiro State, Brazil: Preliminary results

Authors

DOI:

https://doi.org/10.33448/rsd-v13i7.46441

Keywords:

Birds of prey; Feathers; Liver; Mercury.

Abstract

Birds of prey at higher trophic levels are particularly vulnerable to mercury pollution and can serve as indicators of trace elements in different ecosystems. Thus, the aim of this study was to evaluate the presence of mercury in feathers and livers in some birds of prey that occur in the State of Rio de Janeiro, Brazil. Eleven livers were collected from birds of pray during routine necropsies performed at the Rio de Janeiro Zoological Garden, and the feathers from animals in rehabilitation/release process. The results showed mercury concentrations ranged from 0.5 mg / kg to 1.3074 mg / kg in livers and from 0.3376 mg / kg to 3.000 mg / kg in feathers. Liver samples can be collected through invasive methods like biopsies, which involve anesthesia and handling of the bird, or during routine necropsies in zoological collections, breeding grounds, and from deceased birds found in the field, especially those affected by trampling or firearm injuries. Alternatively, analyzing feathers for mercury provides a practical, cost-effective, and non-invasive method that avoids risking harm to the bird's physical well-being.

References

Adeogun, A. O., Chukwuka, A. V., Fadahunsi, A. A., Okali, K. D., Oluwakotanmi, P. G., Ibor, O. R., & Egware, T. U. (2022). Bird feathers as a non-invasive method for ecotoxicological monitoring; a rapid review. Zoologist (The), 20(1), 26-40. https://doi.org/10.4314/tzool.v20i1.5.

Amundsen, P. A., Henriksson, M., Poste, A., Prati, S., & Power, M. (2023). Ecological drivers of mercury bioaccumulation in fish of a subarctic watercourse. Environmental Toxicology and Chemistry, 42(4), 873-887. https://doi.org/10.57041/pjs.v74i4.762.

Bahamonde, P., Espejo, W., Celis, J., Montes, I. Y., & Barra, R. O. (2023). A global-level assessment of gulls (Larus spp.) as bioindicators of trace elements in coastal ecosystems. Latin american journal of aquatic research, 51(2), 195-209. https://doi.org/10.3856/vol51-issue2-fulltext-2977.

Bressan, A. C. S; Lemos, M. (2013). Aplomado Falcon (Falco femoralis) breeding in an urban area in Niterói, Rio de Janeiro, Brasil. Spizaetus, 15, 2-9.

Carravieri, A., Vincze, O., Bustamante, P., Ackerman, J. T., Adams, E. M., Angelier, F., & Fort, J. (2022). Quantitative meta‐analysis reveals no association between mercury contamination and body condition in birds. Biological Reviews, 97(4), 1253-1271. https://doi.org/10.1111/brv.12840.

Milestone Application Book. (2011). Application Book. Review 11/11

Duque-Correa, M. J., Clauss, M., Hoppe, M. I., Buyse, K., Codron, D., Meloro, C., & Edwards, M. S. (2022). Diet, habitat and flight characteristics correlate with intestine length in birds. Proceedings of the Royal Society B, 289(1976), 20220675. https://doi.org/10.1098/rspb.2022.0675.

Gatt, M. C., Furtado, R., Granadeiro, J. P., Lopes, D., Pereira, E., & Catry, P. (2021). Untangling causes of variation in mercury concentration between flight feathers. Environmental Pollution, 269, 116105.

Gojkovic, Z., Simansky, S., Sanabria, A., Márová, I., Garbayo, I., & Vílchez, C. (2023). Interaction of naturally occurring phytoplankton with the biogeochemical cycling of mercury in aquatic environments and its effects on global Hg pollution and public health. Microorganisms, 11(8), 2034.

Grunst, A. S., Grunst, M. L., Grémillet, D., Kato, A., Bustamante, P., Albert, C., & Fort, J. (2023). Mercury contamination challenges the behavioral response of a keystone species to Arctic climate change. Environmental Science & Technology, 57(5), 2054-2063. https://doi.org/10.1021/acs.est.2c08893.

Hughes, K. D., Ewins, P. J., & Clark, K. E. (1997). A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes. Archives of Environmental Contamination and Toxicology, 33, 441-452.

Kenntner, N., Krone, O., Altenkamp, R., & Tataruch, F. (2003). Environmental contaminants in liver and kidney of free-ranging northern goshawks (Accipiter gentilis) from three regions of Germany. Archives of Environmental Contamination and Toxicology, 45, 0128-0135. https://doi.org/10.1007/s00244-002.2100-8

Kraikivska, H. Y., Gutyj, B. V., Hunchak, A. V., Hunchak, V. M., Horalskyi, L. P., Sokulskyi, I. M., & Vus, U. M. (2023). Functional state and protein-synthesizing function of the liver of laying hens under conditions of cadmium loading. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural sciences, 25(99), 171-175. https://doi.org/10.32718/nvlvet-a9928.

Kumar, V., Umesh, M., Shanmugam, M., Chakraborty, P., Duhan, L., Gummadi, S., Pasrija, R., Jayaraj, I., & Huligowda, L. (2023). A Retrospection on Mercury Contamination, Bioaccumulation, and Toxicity in Diverse Environments: Current Insights and Future Prospects. Sustainability. https://doi.org/10.3390/su151813292.

Kumari, P., & Kumar, P. (2024). Metal (loid) Source and Effects on Peri-Urban Agriculture/Aquaculture Sediments. In Technological Approaches for Climate Smart Agriculture (pp. 133-164). Cham: Springer International Publishing.

Lacerda, L. D., Paraquetti, H. H. M., Rezende, C. E., Silva, L. F. F., Silva Filho, E. V., Marins, R. V., & Ribeiro, M. G. (2002). Mercury concentrations in bulk atmospheric deposition over the coast of Rio de Janeiro, Southeast, Brazil. Journal of the Brazilian Chemical Society, 13, 165-169.

Lemos, M; Freitas, A. A. R. (2009). Occurrence of the black-banded owl (Strix huhula) in the urban area of Niteroi, Rio de Janeiro State, Brazil. Neotropical Raptors Network, 8, 10-11.

Lindberg, P., & Odsjö, T. (1983). Mercury levels in feathers of peregrine falcon Falco peregrinus compared with total mercury content in some of its prey species in Sweden. Environmental Pollution Series B, Chemical and Physical, 5(4), 297-318.

Mallet-Rodrigues, F. (2015). The local conservation status of the regionally rarest bird species in the state of Rio de Janeiro, southeastern Brazil. Journal of Threatened Taxa, 7(9), 7510-7537. https://doi.org/10.11609/JOTT.1638.7510-7537.

Martoredjo, I., Calvão Santos, L. B., Vilhena, J. C. E., Rodrigues, A. B. L., de Almeida, A., Sousa Passos, C. J., & Florentino, A. C. (2024). Trends in Mercury Contamination Distribution among Human and Animal Populations in the Amazon Region. Toxics, 12(3), 204.

Masad, M., Alawaideh, S., Nusairat, B., Alnawaiseh, A., & Al Shra’ah, A. (2023). Evaluation of Dioxin/Furan and Elements in Poultry from Zarqa Governorate, Jordan. Journal of Analytical Methods in Chemistry, 2023(1), 8458678. https://doi.org/10.1155/2023/8458678.

Monserrate-Maggi, L., Serrano-Mena, L., Delahaye, L., Calle, P., Alvarado-Cadena, O., Ruiz-Barzola, O., & Cevallos-Cevallos, J. M. Microorganisms isolated from seabirds feathers for mercury bioremediation. https://doi.org/10.21931/rb/2023.08.01.19.

Panzenhagen, A. C., dos Santos Petry, F., Teixeira, A. A., Santos, L., Kessler, F. G. C., Gelain, D. P., & Moreira, J. C. F. (2024). Biomarkers of methylmercury neurotoxicity and neurodevelopmental features: a systematic review. Food and Chemical Toxicology, 114851. https://doi.org/10.17762/jaz.v44is-5.1844.

Pathak, A., Anjaria, P., Bhavsar, P., & Asediya, V. (2024). Health Risk Linked to Mercury Toxicity in Food and Environment. In Mercury Toxicity Mitigation: Sustainable Nexus Approach (pp. 137-156). Cham: Springer Nature Switzerland.

Peterson, B. D., Krabbenhoft, D. P., McMahon, K. D., Ogorek, J. M., Tate, M. T., Orem, W. H., & Poulin, B. A. (2023). Environmental formation of methylmercury is controlled by synergy of inorganic mercury bioavailability and microbial mercury‐methylation capacity. Environmental Microbiology, 25(8), 1409-1423. https://doi.org/10.1111/1462-2920.16364.

Ribeiro, R. D. O. R., Mársico, E. T., de Jesus, E. F. O., da Silva Carneiro, C., Júnior, C. A. C., de Almeida, E., & Filho, V. F. D. N. (2014). Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X‐ray fluorescence. Journal of food science, 79(4), T738-T742.

Sick, H. (1997). Ornitologia Brasileira. (2a ed.), Ed. Nova Fronteira, 912 p.

Silveira, L. F; Straube, F. C. Aves. In: Machado, A. B. M.; Drummond, G. M.; Paglia, A. P. (2008). Livro vermelho da fauna brasileira ameaçada de extinção. 1. ed. Brasília: Ministério do Meio Ambiente, V.II, p.379-666.

Skibniewska, E. M., & Skibniewski, M. (2023). The Total Mercury Concentration in Organs of Eurasian Magpies (Pica pica) and Common Woodpigeons (Columba palumbus) from the Warsaw Municipal Area. Animals, 13(4), 575. https://doi.org/10.3390/ani13040575.

Solonen, T., & Lodenius, M. (1990). Feathers of birds of prey as indicators of mercury contamination in southern Finland. Ecography, 13(3), 229-237.

Tian, L., Zhu, Y., Yu, R., & Zheng, X. (2024). A Pilot Study on Bioaccumulation and Tissue Distribution of Mercury in Barn Swallow (Hirundo rustica). Toxics, 12(3), 206.

Toassi, R. F. C. & Petry, P. C. (2021). Metodologia científica aplicada à área da Saúde. (2a ed.), Editora da UFRGS.

Vajargah, M. F. (2021). A review on the effects of heavy metals on aquatic animals. J ISSN, 2766(2276), 854. https://doi.org/10.37871/jbres1324.

Viana, A. B., Pappis, C., Garcia, V. L., Hoffmann, D. M., Burg, A. F., & Dressler, V. L. (2024). Mercury Extraction from Multivitamin Mixtures Followed by Determination Using FI-CV-ICP-MS. Journal of the Brazilian Chemical Society, 35(6), e-20230187. https://doi.org/10.21577/0103-5053.20230187.

Wang, W., Mao, X., Zhang, R., Zhou, X. X., Liu, Y., Zhou, H., & Yan, B. (2023). Nanoplastic exposure at environmental concentrations disrupts hepatic lipid metabolism through oxidative stress induction and endoplasmic reticulum homeostasis perturbation. Environmental Science & Technology, 57(38), 14127-14137. https://doi.org/10.1021/acs.est.3c02769.

Zhao, Q., Yao, Z., Chen, L., He, Y., Xie, Z., Zhang, H., & Zhang, X. (2022). Transcriptome-wide dynamics of m6A methylation in tumor livers induced by ALV-J infection in chickens. Frontiers in Immunology, 13, 868892. https://doi.org/10.3389/fimmu.2022.868892.

Zhou, W., Shi, W., Du, X., Han, Y., Tang, Y., Ri, S., & Liu, G. (2023). Assessment of nonalcoholic fatty liver disease symptoms and gut–liver axis status in zebrafish after exposure to polystyrene microplastics and oxytetracycline, alone and in combination. Environmental Health Perspectives, 131(4), 047006. https://doi.org/10.1289/EHP11600.

Zolfaghari, G; Esmaili-Sari, A; Ghasempouri, S. M; Kiabi, B. H. (2007). Examination of Mercury concentration in the feathers of 18 species of birds in southwest Iran. Environmental Research, 104, 258-265. 10.1016/j.envres.2006.12.002

Zubair, M., & Ullah, A. (2022, October). Chicken feathers keratin/modified graphene oxide based biosorbent for water remediation. In Journal Of The American Oil Chemists Society (Vol. 99, pp. 161-161). 111 River ST, Hoboken 07030-5774, NJ USA. https://doi.org/10.21748/xygc9438.

Downloads

Published

28/07/2024

How to Cite

LEMOS, M. .; RIBEIRO, R. de O. R. .; TARGINO, F. J. .; ALMEIDA, A. L. de .; FEDULLO, L. P. L. .; PIRES, J. R. .; BALTHAZAR, C. F. .; MANO, S. B. .; MÁRSICO, E. T. Mercury in liver and feathers of some birds of prey in Rio de Janeiro State, Brazil: Preliminary results. Research, Society and Development, [S. l.], v. 13, n. 7, p. e13713746441, 2024. DOI: 10.33448/rsd-v13i7.46441. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46441. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences