Biochar improved soil salinity, mitigated sodium toxicity, and improved plant growth in salt-affected soils

Authors

DOI:

https://doi.org/10.33448/rsd-v13i12.47723

Keywords:

Carbon; Soil Remediation; Sustainablewaste Management.

Abstract

In this study, we evaluated the early growth stages of maize plants cultivated in saline-sodic soil treated with various types of biochar. Biochar from sugarcane bagasse, orange bagasse, and corncobs was applied to a clayey saline-sodic soil and transferred to soil columns. After leaching, we measured the electrical conductivity (EC) and the exchangeable sodium percentage. Maize plants were grown in the leached soil. Plant biomass and nutrient concentration were determined. Biochar reduced EC to 3.20 dS m-1 and ESP to 2.56%. In the control soil, some seeds barely germinated without biochar, and plant growth was impaired. Conversely, all biochar treatments promoted seed germination and plant development. The CCB treatment not only enhanced plant growth but also achieved the best nutritional balance, as evidenced by plant nutrient concentration, which is similar to values typically found in maize plants during the early growth stages. However, the OBB treatment could not reduce the EC and ESP values to acceptable levels. These findings suggest that SCB and CCB biochar could be a promising solution for improving soil quality and promoting plant growth in salt-affected soils, thereby contributing to the field of sustainable agriculture.

References

Ali, S.; Rizwan, M.; Qayyum, M. F.; Ok, Y. S.; Ibrahim, M.; Riaz, M.; Arif, M. S.; Hafeez, F.; Al-Wabel, M. I.; & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research 24(14), 12700–12712.

Bhaduri, D.; Saha, A.; Desai, D.; & Meena, H. N. (2016). Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere. 148, 86–98.

Carvalho Junior, J. I. T.; Gonzaga, M. I. S.; Almeida, A. Q.; Araújo, J.; & Santos, L. C. O. (2019). O tipo e a quantidade de biocarvão influenciaram a atividade microbiana e o efeito priming do carbono no solo. Semina: Ciências. Agrárias. 40(4),1405–1416.

Chaganti, V. N.; Crohn, D. M.; & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agricultutal Water Management. 158, 255–265.

Costa, M. E.; Miranda, N. O.; Pimenta, A. S.; Nascimento, E. K. A.; Rodrigues, A. P. M. S.; & Júnior, A. F. M. (2018). Dry mass and nutrient content of maize plants under effect of saline waters and biochar. Revista Verde Agroecologia e Desenvolvimento. Sustentável. 13(5), 672-682.

Dong, R.; Wang, X.; Chen, Z.; Yuan, F.; Zhang, W.; & Li, H. (2020). Estimating Plant Nitrogen Concentration of Maize Using a Leaf Fluorescence Sensor across Growth Stages. Remote Sensing. 12(7), 2-21.

Endo, T.; Abdalla, M. A.; Elkarim, A. K. H. A.; Toyoda, M.; Yamamoto, S.; & Yamanaka, N. (2021). Simplified Evaluation of Salt Affected Soils Using 1, 5 Soil–Water Extract. Communic. Soil Science Plant Analys 52(20), 2533–2549.

Esteves, B. S.; & Syzuki, M. S. (2008). Efeito da salinidade sobre as plantas. Oecologia Australis, 12(4), 662-679, 2008.

Food and Agriculture Organization of the United Nations (FAO). (2020). Agricultural Production Statistics https://openknowledge.fao.org/

Farooq, M.; Hussain, M.; & Wakeel, A. (2015). Salt stress in maize: effects, resistance mechanisms, and management. Agronomy for Sustainable Development. 35, 461–481.

Feitosa, A. A.; Teixeira, W. G.; Ritter, E.; Resende, F. A.; & Kern, J. (2020). Caracterização Química de Amostras de Biocarvão de Casca de Banana e Bagaço de Laranja Carbonizados a 400 e 600°C. Revista Virtual de Química. 12(4), 901-912.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. 35(6), 1039-1042.

Freitas, E. D.; Lacerda, C. F.; Amorim, A. V.; Ferreira, J. F. S.; Costa, C. A. G.; Silva, A. O.; & Gheyi, H. R. (2022). Leaching fraction impacts water use efficiency and nutrient losses in maize crop under salt stress. Revista Brasileira de Engenharia Agrícola e Ambiental. 26(11), 797-806.

Gaskin, J. W.; Steiner, C.; Harris, K.; Das, K. C.; & Bibens, B. (2008). Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural. Sociedade Americana de Engenheiros Agrícolas e Biológicos. 51(6), 2061-2069.

Gheyi, H. R.; Dias, N. S.; Lacerda, C. F.; & Gomes Filho, E. (2016). Manejo da salinidade na agricultura: Estudos básicos e aplicados. INCTSal.

Hopmans, J. W.; Qureshi, A. S.; Kisekka, I.; Munns, R.; Grattan, S. R.; & Rengasamy, P. (2021). Chapter One - Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy. 169, 1–191.

Ippolito, J. A.; Spokas, K. A.; Novak, J. M.; Lentz, R. D.; & Cantrell, K. B. (2014). Biochar elemental composition and factors influencing nutrient retention. Biochar Environ Manag Sci Technol Routledge.

Jaffar, M. T.; Chang, W.; Zhang, J.; Mukhtar, A.; Mushtaq, Z.; Ahmed, M.; Zahir, Z. A.; & Siddique, K. H. (2024). Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. Journal of . Environmental Management. 363, 121418.

Javed, S. A.; Shahzad, S. M.; Ashraf, M.; Kausar, R.; Arif, M. S.; Albasher, G.; Rizwana, H.; & Shakoor, A. (s.d.). Interactive effect of different salinity sources and their formulations on plant growth, ionic homeostasis and seed quality of maize. Chemosphere. 291, 132678.

Jindo, K.; Audette, Y.; Higashikawa, F. S.; Silva, C. A.; Akashi, K.; Mastrolonardo, G.; & Sanchez-Monedero, M. C. (2020). Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chemical and Biological Technologies in Agriculture. 7(15), 2-12.

Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd-Allah, E.F.; & Ibrar, D. (2024). Biochar Production and Characteristics, Its Impacts on Soil Health, Crop Production, and Yield Enhancement: A Review. Plants. 13(2), 2-18.

Magalhaes, A. G.; Rolim, M. M.; Duarte, A. S.; Silva, G. F.; Neto, E. B.; & Pedrosa, E. M. (2016). Macronutrient and sodium content in maize plants under cassava wastewater fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental. 20(3), 215-222.

Malavolta, E. (2006). Manual de nutrição mineral de plantas. Editora Agronômica.

Meiling, Z.; Yingying, H.; Wu, H.; Jian, C.; Jinsheng, L.; & Yi, W. (2023). Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance, The Crop Journal. 11(4), 1048-1058.

Muhammad, T. J.; Wenqian, C.; Jianguo, Z.; Ahmed, M.; Zain, M.; Muhammad, A.; Zahir, A. Z.; & Kadambot, H. M. (2024). Siddique Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. Journal of Environmental Management, 363, 121418.

Munns, R.; Shazia, H.; Rivelli, A. R.; Richard, A. J.; Condon, A. G. T.; Lindsay, M. P.; Evans, S. L.; Schachtman, D. P.; & Ray, A. H. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil. 247, 93-105.

Obia, A.; Mulder, J.; Hale, S. E.; & Nurida, N. L. (2018). Cornelissen G. The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS One. 13(5), e0196794.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A. L.; & Lehmann, J. (2012). Corn Growth and Nitrogen Nutrition after Additions of Biochars with Varying Properties to a Temperate Soil. Biology and Fertility of Soils. 48, 271-284.

Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Price.

Santos, W. M.; Gonzaga, M. I. S.; Silva, A. J.; & Almeida, A. Q. (2022). Improved water and ions dynamics in a clayey soil amended with different types of agro-industrial waste biochar. Soil and Tillage Research. 223, 105482.

Schossler, T. R.; Machado, D. M.; Zuffo, A. M.; Andrade, F. R.; & Piauilino, A. C. (2012). Salinidade: efeitos na fisiologia e na nutrição mineral de plantas. Enciclopedia Biosfera. 8, (15), 1563.

Silva, F. C. (2009). Chemical Analysis of Soil, Plant, and Fertilizer. Embrapa Solos.

Sun, Y.; Chen, X.; Yang, J.; Luo, Y.; Yao, R.; Wang, X.; Xie, W.; & Zhang, X. (2022). Biochar effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China. Water. 14, 3204.

Thomas, S. C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management. 129, (1), 62-68.

Wakeel, A. (2013). Potassium-sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science. 176(3), 344–354.

Wang, Y.; Lin, Q.; Liu, Z.; Liu, K.; Wang, X.; & Shang, J. (2023). Salt-affected marginal lands: a solution for biochar production. Biochar. 5 (21), 2-10.

Wang, Z.; Wang, H.; Zhao, C.; Yang, K.; Li, Z.; & Yin, K. (2022). Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy. 12, 859.

Williams, J. M.; Vahedifard, F.; & Latifi, N. (2020). Mechanical, chemical, hydraulic, and microstructural properties of buckshot clay amended with gasification biochar. Journal of Environmental Engineering.146(11), 04020123.

Wong, J. T. F.; Chow, K. L.; Chen, X. W.; Wai, N. G. C. W.; & Wong, M. H. (2022). Efects of biochar on soil water retention curves of compacted clay during wetting and drying. Biochar. 4(4), 2-14.

Xiao, L.; & Meng, F. (2020). Evaluating the effect of biochar on salt leaching and nutrient retention of Yellow River Delta soil. Soil Use and Management. 36, 740-750.

Yuan, Y.; Qiang, L.; Hao, Z.; Min, L.; Yifan, L.; Xiao, W.; Yue, P.; Xianxiang, L.; Fengmin, L.; Xiaoyun L.; & Baoshan, X. (2023). Biochar as a sustainable tool for improving the health of salt-affected soils. Soil & Environmental Health. (3), 100033.

Yue, Y.; Guo, W. N.; Lin, Q. M.; Li, G. T.; & Zhao, X. R. (s.d.). Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. Journal of Soil and Water Conservation. 71(6), 467-475.

Zhang, M.; Liang, X.; Wang, L.; Cao, Y.; Weibin, C.; Shi, J.; Lai, J.; & Jiang, C. (2019). A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants. 5 (12), 1297–1308.

Zhang, W. P.; Fornara, D.; Guang-Cai, L.; Peñuelas, J.; Sardans, J.; Sun, J.; Zhang, L.; & Long, L. (s.d.). Interspecific interactions affect N and P uptake rather than N:P ratios of plant species: evidence from intercropping, Journal of Plant Ecology, 15(2), 223–236,

Zhang, Y.; Yang, J.; Yao, R.; Wang, X.; & Xie, W. (2020). Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil. Pedosphere. 2020 Out; 30(5), 694-702.

Zong, Y.; Chen, D.; & Lu, S. (2014). Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil. Journal of Plant Nutrition and Soil Science. 177(6), 920-926.

Downloads

Published

07/12/2024

How to Cite

ARAÚJO, K. C. T. de .; SANTOS, W. M. dos .; GONZAGA, M. I. S. .; SILVA, A. N. C. da .; SOBRAL, L. F. . Biochar improved soil salinity, mitigated sodium toxicity, and improved plant growth in salt-affected soils. Research, Society and Development, [S. l.], v. 13, n. 12, p. e95131247723, 2024. DOI: 10.33448/rsd-v13i12.47723. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47723. Acesso em: 7 jan. 2025.

Issue

Section

Agrarian and Biological Sciences