Digital dentistry as an adjunct in smile planning for patients with orthodontic problems

Authors

DOI:

https://doi.org/10.33448/rsd-v13i12.47850

Keywords:

Dentistry; Smiling; Orthodontics; Technology; Technology, Dental.

Abstract

Digital dentistry has promoted significant advances in aesthetic and orthodontic planning, providing greater precision and efficiency in treatments. This study aimed to review the scientific literature published between 2010 and 2024, and other specific ones, analyzing the impact of digital technologies on orthodontic diagnosis and treatment. Articles were selected from PubMed, SciELO and Google Scholar databases, focusing on technologies such as intraoral scanners, digital setup, cone beam computed tomography (CBCT), 3D printing, digital planning software and others. The analysis included only studies that discussed the practical application of these tools in the orthodontic context. The results highlight that digital dentistry has transformed orthodontic planning, making treatments more efficient, predictable and personalized, evidencing the positive impact of these innovations on clinical efficiency and patient comfort. Technologies such as digital setup, intraoral scanners, CAD/CAM systems and 3D printing have improved diagnostic visualization and communication with patients, in addition to optimizing the production of customized orthodontic devices. The use of these tools, although effective, presents challenges such as high implementation costs and the need for advanced technical training. However, the integration of these technologies promises a promising future for orthodontics, with the potential to further transform the field, being a fundamental pillar in the creation of harmonious and customized smiles.

References

Araújo, M. E. S. S. (2021). A harmonia da estética do sorriso: uma revisão de literatura. Paripiranga-BA.

Azpiazu-Flores, F. X., Lee, D. J., Jurado, C. A., & Nurrohman, H. (2023). 3D-Printed overlay template for diagnosis and planning complete arch implant prostheses. Healthcare, 11(8), 1062. https://doi.org/10.3390/healthcare11081062

Bianchi, J., Mendonca, G., Gillot, M., Oh, H., Park, J., Turkestani, N. A., Gurgel, M., & Cevidanes, L. (2022). Three-dimensional digital applications for implant space planning in orthodontics: A narrative review. Journal of the World Federation of Orthodontists, 11(3), 207–215. https://doi.org/10.1016/j.ejwf.2022.10.006

Camardella, L. T., Rothier, E. K. C., & Camardella, E. G. (2015). A utilização do fluxo de trabalho digital no tratamento ortodôntico e orto-cirúrgico. Orthodontic Science and Practice, 8(31), 305–314.

Camardella, L. T., de Vasconcellos, V. O., & Breuning, H. (2017). Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. American Journal of Orthodontics and Dentofacial Orthopedics, 151, 1178–1187. https://doi.org/10.1016/j.ajodo.2016.11.029

Cechelero, E. B. (2021). Análise comparativa de técnicas de escaneamento digital: estudo in vitro. Archives of Health Investigation, 10(2), 248–254.

Cousley, R. R. (2020). Introducing 3D printing in your orthodontic practice. Journal of Orthodontics, 47(3), 265–272. https://doi.org/10.1177/1465312520936704

Cruz, E. M. (2018). Sistemas CAD/CAM na Odontologia (Monografia, Universidade Federal de Minas Gerais). Belo Horizonte, MG.

Cunha, T. M. A. D., Barbosa, I. D. S., & Palma, K. K. (2021). Orthodontic digital workflow: Devices and clinical applications. Dental Press Journal of Orthodontics, 26(6), e21spe6. https://doi.org/10.1590/2177-6709.26.6.e21spe6

Dindaroğlu, F., Duran, G. S., Görgülü, S., & Yetkiner, E. (2016). Social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology. Angle Orthodontist, 86(3), 448–455.

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa (2ª ed.). Editora Artes Médicas.

Favaretto, M., Shaw, D., De Clercq, E., Joda, T., & Elger, B. S. (2020). Big Data and digitalization in dentistry: A systematic review of the ethical issues. International Journal of Environmental Research and Public Health, 17(7), 2495. https://doi.org/10.3390/ijerph17072495

Francisco, I., Ribeiro, M. P., Marques, F., Travassos, R., Nunes, C., Pereira, F., Caramelo, F., Paula, A. B., & Vale, F. (2022). Application of three-dimensional digital technology in orthodontics: The state of the art. Biomimetics, 7(1), 23. https://doi.org/10.3390/biomimetics7010023

Gan, N., Xiong, Y., & Jiao, T. (2016). Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS ONE, 11(7), e0158800. https://doi.org/10.1371/journal.pone.0158800

Garib, D. G., Silva Filho, O. G., Janson, G., & Almeida, M. R. (2007). Tomografia computadorizada de feixe cônico (Cone beam): entendendo este novo método de diagnóstico por imagem com promissora aplicabilidade na Ortodontia. Revista Dental Press de Ortodontia e Ortopedia Facial, 12(2), 139–156.

Gonçalves, J. R. (2019). Como escrever um artigo de revisão de literatura. Revista JRG de Estudos Acadêmicos, 2(5), 29–55.

Gurel, G., Morimoto, S., Calamita, M. A., Coachman, C., & Sesma, N. (2012). Clinical performance of porcelain laminate veneers: Outcomes of the aesthetic pre-evaluative temporary (APT) technique. International Journal of Periodontics & Restorative Dentistry, 32(6), 625–635.

Henarejos-Domingo, V., Madeira, S. N., Roig, M., & Blasi, A. (2022). The digital alveolar cast: A revised approach to an old concept. Journal of Prosthetic Dentistry, 127(2), 213–218. https://doi.org/10.1016/j.prosdent.2020.08.036

Houle, J. P., Piedade, L., Todescan, R., & Pinheiro, F. H., Jr. (2017). The predictability of transverse changes with Invisalign. The Angle Orthodontist, 87(1), 19–24. https://doi.org/10.2319/122115-875.1

Hsu, L. F., Moon, W., Chen, S. C., & Chang, K. W. (2023). Digital workflow for mini-implant-assisted rapid palatal expander fabrication—A case report. BMC Oral Health, 23(1), 887. https://doi.org/10.1186/s12903-023-03589-5

Jeong, Y. G., Lee, W. S., & Lee, K. B. (2018). Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. Journal of Advanced Prosthodontics, 10(3), 245–251. https://doi.org/10.4047/jap.2018.10.3.245

Kim, R. J. Y., Cho, S. M., Jung, W. S., & Park, J. M. (2023). Trueness and surface characteristics of 3-dimensional printed casts made with different technologies. Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2022.12.002

Kravitz, N. D., Kusnoto, B., BeGole, E., Obrez, A., & Agran, B. (2009). How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. American Journal of Orthodontics and Dentofacial Orthopedics, 135(1), 27–35. https://doi.org/10.1016/j.ajodo.2007.05.018

Leonardi, R., Lo Giudice, A., Rugeri, M., Muraglie, S., Cordasco, G., & Barbato, E. (2018). Three-dimensional evaluation on digital casts of maxillary palatal size and morphology in patients with functional posterior crossbite. European Journal of Orthodontics, 40(5), 556–562. https://doi.org/10.1093/ejo/cjx107

Leonardi, R., Muraglie, S., Lo Giudice, A., Aboulazm, K. S., & Nucera, R. (2020). Evaluation of mandibular symmetry and morphology in adult patients with unilateral posterior crossbite: A CBCT study using a surface-to-surface matching technique. European Journal of Orthodontics. https://doi.org/10.1093/ejo/cjz106

Miller, N., Duong, T., & Derakhshan, M. (2002). The Invisalign system: Case report of a patient with deep bite, upper incisor flaring, and severe curve of Spee. Seminars in Orthodontics, 8(1), 43–50.

Montalvo-Arias, D. (2020). Periodontal considerations in esthetic dentistry. Springer. https://doi.org/10.1007/978-3-030-26687-2

Morales-Burruezo, I., Gandía-Franco, J. L., Cobo, J., Vela-Hernández, A., & Bellot-Arcís, C. (2020). Arch expansion with the Invisalign system: Efficacy and predictability. PLOS ONE, 15(11), e0242979. https://doi.org/10.1371/journal.pone.0242979

Robbins, J. W., Alvarez, M. G., Beckel, B. T., Norris, R. T., & Caesar, R. R. (2023). Restoratively guided orthodontic treatment: The pre-orthodontic bonding concept. Journal of Esthetic and Restorative Dentistry, 35(2), 270–278. https://doi.org/10.1111/jerd.12919

Rocha, C. K. F., Teixeira, P. R., & Breda, P. L. C. L. (2021). Importance of smile aesthetics in self-esteem. Brazilian Journal of Health Review, 4(6), 25867–25876. https://doi.org/10.34119/bjhrv4n6-008

Sachdeva, R. C. (2001). SureSmile technology in a patient-centered orthodontic practice. Journal of Clinical Orthodontics, 35(4), 245–253.

Tai, K., Park, J. H., Ikeda, K., Nishiyama, A., & Sato, Y. (2012). Severe facial asymmetry and unilateral lingual crossbite treated with orthodontics and 2-jaw surgery: 5-year follow-up. American Journal of Orthodontics and Dentofacial Orthopedics, 142(4), 509–523. https://doi.org/10.1016/j.ajodo.2011.01.026

Teixeira, T. O., & Rolim, V. C. L. B. (2022). A importância do fluxo digital na Ortodontia. Revista Ibero-Americana de Humanidades, Ciências e Educação, 8(5), 2432–2454. https://doi.org/10.51891/rease.v8i5.5688

Tian, Y., Chen, C., Xu, X., Wang, J., Hou, X., Li, K., Lu, X., Shi, H., Lee, E. S., & Jiang, H. B. (2021). A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning, 2021, 9950131. https://doi.org/10.1155/2021/9950131

Yu, W., Wang, J., Ma, J., & Cao, J. (2024). Application of artificial intelligence in orthodontics. Orthodontic and Craniofacial Research, 27(1), 14–25. https://doi.org/10.1111/ocr.12504

Published

15/12/2024

How to Cite

ARAÚJO, J. M. de .; SANTOS, M. S. dos .; GUILLOU, J. Q. C. . Digital dentistry as an adjunct in smile planning for patients with orthodontic problems. Research, Society and Development, [S. l.], v. 13, n. 12, p. e166131247850, 2024. DOI: 10.33448/rsd-v13i12.47850. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47850. Acesso em: 7 jan. 2025.

Issue

Section

Review Article