Organophosphate neurotoxicity and its relation to neurological changes and psychiatric disorders

Authors

DOI:

https://doi.org/10.33448/rsd-v14i1.48130

Keywords:

Organophosphorus compounds; Neurotoxic syndromes; Herbicides; Autistic Spectrum Disorder.

Abstract

Organophosphates are anticholinesterase agents suspected of interfering with the development, growth and functioning of different organ systems. Thus, the objective of this study was to develop a survey of data inherent to the neurotoxic effects of organophosphates and possible associated clinical conditions. A systematic review of the literature was developed, based on articles indexed in the main databases: Elsevier, Cochrane, PubMed and SciELO. Studies were selected using the search terms contained in Health Sciences Descriptors (Decs) and Medical Subject Headings (Mesh). The data obtained point to the neurotoxic effects of the use of organophosphates, from impairment in the development of the Nervous System to neurotoxic events, ranging from acute cholinergic crisis and intermediate syndrome to delayed polyneuropathy induced by organophosphate, clinical conditions due to axonal degeneration in different regions of the Central and Peripheral Nervous System, neurodegenerative and progressive diseases, in addition to cognitive and behavioral disorders, such as autism spectrum disorder. Thus, it is concluded that exposure to organophosphate compounds can trigger mild, moderate or severe clinical manifestations that reveal different neurotoxic syndromes, as well as psychiatric disorders, such as depression, repetitive behaviors, difficulty in social interaction and decreased intelligence quotient.

References

Agrotóxico. (2018). INCA - National Cancer Institute. https://www.inca.gov.br/en/node/1909

Aldridge, J. E., Seidler, F. J., & Slotkin, T. A. (2004). Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environmental Health Perspectives, 112(2), 148–155. https://doi.org/10.1289/ehp.6713

Aleyasin H. (2004) Nuclear Factor- B Modulates the p53 Response in Neurons Exposed to DNA Damage. Journal of Neuroscience, 24(12), 2963–73.

Aliomrani, M., Mesripour, A., & Sayahpour, Z. (2021). AChR is partly responsible in mice depressive-like behavior after Phosalone exposure. Neurotoxicology and Teratology, 84, 106957. https://doi.org/10.1016/j.ntt.2021.106957

Bouchard, M. F., Chevrier, J., Harley, K. G., Kogut, K., Vedar, M., Calderon, N., Trujillo, C., Johnson, C., Bradman, A., Barr, D. B., & Eskenazi, B. (2011). Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environmental Health Perspectives, 119(8), 1189–1195. https://doi.org/10.1289/ehp.1003185

Braquenier, J.-B., Quertemont, E., Tirelli, E., & Plumier, J.-C. (2010). Anxiety in adult female mice following perinatal exposure to chlorpyrifos. Neurotoxicology and Teratology, 32(2), 234–239. https://doi.org/10.1016/j.ntt.2009.08.008

Burke, R. D., Todd, S. W., Lumsden, E., Mullins, R. J., Mamczarz, J., Fawcett, W. P., Gullapalli, R. P., Randall, W. R., Pereira, E. F. R., & Albuquerque, E. X. (2017). Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. Journal of Neurochemistry, 142, 162–177. https://doi.org/10.1111/jnc.14077

Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924.

Constantino, J. N. (2011). The Quantitative Nature of Autistic Social Impairment. Pediatric Research, 69(5 Part 2), 55R62R. https://doi.org/10.1203/pdr.0b013e318212ec6e

De Felice, A., Greco, A., Calamandrei, G., & Minghetti, L. (2016). Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. Journal of Neuroinflammation, 13(1). https://doi.org/10.1186/s12974-016-0617-4

De Felice, A., Scattoni, M. L., Ricceri, L., & Calamandrei, G. (2015). Prenatal Exposure to a Common Organophosphate Insecticide Delays Motor Development in a Mouse Model of Idiopathic Autism. PLOS ONE, 10(3), e0121663. https://doi.org/10.1371/journal.pone.0121663

Engel, S. M., Wetmur, J., Chen, J., Zhu, C., Barr, D. B., Canfield, R. L., & Wolff, M. S. (2011). Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood. Environmental Health Perspectives, 119(8), 1182–1188. https://doi.org/10.1289/ehp.1003183

Eubig, P. A., Aguiar, A., & Schantz, S. L. (2010). Lead and PCBs as Risk Factors for Attention Deficit/Hyperactivity Disorder. Environmental Health Perspectives, 118(12), 1654–1667. https://doi.org/10.1289/ehp.0901852

Hallmayer, J. (2011). Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Archives of General Psychiatry, 68(11), 1095. https://doi.org/10.1001/archgenpsychiatry.2011.76

Hsieh B. H., Deng J. F., Ger J., & Tsai W. J. (2001). Acetylcholinesterase Inhibition and the Extrapyramidal Syndrome: A Review of the Neurotoxicity of Organophosphate. Neurotoxicology, 22(4), 423–7. https://doi.org/10.1016/S0161-813X(01)00044-4

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671. https://doi.org/10.3758/bf03196323

Karalliedde L., Baker D., & Marrs T. C. (2006). Organophosphate-Induced Intermediate Syndrome. Toxicological Reviews, 25(1), 1–14. https://doi.org/10.2165/00139709-200625010-00001

Kaya, Y., Bas, O., Hanci, H., Cankaya, S., Nalbant, I., Odaci, E., Avni Uydu, H., & Aslan, A. (2018). Acute renal involvement in organophosphate poisoning: histological and immunochemical investigations. Renal Failure, 40(1), 410–415. https://doi.org/10.1080/0886022x.2018.1489289

Langiano V. C (2006). Toxicidade do Roundup ® e seus efeitos para o peixe neotropical Prochilodus lineatus. http://www.uel.br/laboratorios/lefa/dissertacaovivian.pdf

Lee, J. E., Lim, M. S., Park, J. H., Park, C. H., & Koh, H. C. (2014). Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. NeuroToxicology, 42, 58–70. https://doi.org/10.1016/j.neuro.2014.04.001

Levin, E. D., Addy, N., Nakajima, A., Christopher, N. Channelle., Seidler, F. J., & Slotkin, T. A. (2001). Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Developmental Brain Research, 130(1), 83–89. https://doi.org/10.1016/s0165-3806(01)00215-2

Lorke, D. E., & Petroianu, G. A. (2019). Treatment of Organophosphate Poisoning with Experimental Oximes: A Review. Current Organic Chemistry, 23(5), 628–639. https://doi.org/10.2174/1385272823666190408114001

Lotti M., & Moretto A. (2005). Organophosphate-Induced Delayed Polyneuropathy. Toxicological Reviews, 24(1), 37–49. https://doi.org/10.2165/00139709-200524010-00003

Lovasi, G. S., Quinn, J. W., Rauh, V. A., Perera, F. P., Andrews, H. F., Garfinkel, R., Hoepner, L., Whyatt, R., & Rundle, A. (2011). Chlorpyrifos Exposure and Urban Residential Environment Characteristics as Determinants of Early Childhood Neurodevelopment. American Journal of Public Health, 101(1), 63–70. https://doi.org/10.2105/ajph.2009.168419

Marks, A. R., Harley, K., Bradman, A., Kogut, K., Barr, D. B., Johnson, C., Calderon, N., & Eskenazi, B. (2010). Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: The CHAMACOS Study. Environmental Health Perspectives, 118(12), 1768–1774. https://doi.org/10.1289/ehp.1002056

Mullen, B. R., Khialeeva, E., Hoffman, D. B., Ghiani, C. A., & Carpenter, E. M. (2012). Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behaviour and Brain Morphology. ASN Neuro, 5(1), AN20120060. https://doi.org/10.1042/an20120060

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Philippat, C., Barkoski, J., Tancredi, D. J., Elms, B., Barr, D. B., Ozonoff, S., Bennett, D. H., & Hertz-Picciotto, I. (2018). Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. International Journal of Hygiene and Environmental Health, 221(3), 548–555. https://doi.org/10.1016/j.ijheh.2018.02.004

Pope, C., Karanth, S., & Liu, J. (2005). Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environmental Toxicology and Pharmacology, 19(3), 433–446. https://doi.org/10.1016/j.etap.2004.12.048

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515–526. https://doi.org/10.1017/S0140525X00076512

Rauh, V. A., Garfinkel, R., Perera, F. P., Andrews, H. F., Hoepner, L., Barr, D. B., Whitehead, R., Tang, D., & Whyatt, R. W. (2006). Impact of Prenatal Chlorpyrifos Exposure on Neurodevelopment in the First 3 Years of Life Among Inner-City Children. PEDIATRICS, 118(6), e1845–e1859. https://doi.org/10.1542/peds.2006-0338

Rauh, V. A., Perera, F. P., Horton, M. K., Whyatt, R. M., Bansal, R., Hao, X., Liu, J., Barr, D. B., Slotkin, T. A., & Peterson, B. S. (2012). Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proceedings of the National Academy of Sciences, 109(20), 7871–7876. https://doi.org/10.1073/pnas.1203396109

Richardson R. J., Fink J. K., Glynn P., Hufnagel R. B., Makhaeva G. F., & Wijeyesakere S. J. (2020). Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Advances in Neurotoxicology, 4, 1–78. https://doi.org/10.1016/bs.ant.2020.01.001

Richardson R. J., Hein N. D., Wijeyesakere S. J., Fink J. K., & Makhaeva G. F. (2013). Neuropathy target esterase (NTE): overview and future. Chemico-Biological Interactions, 203(1): 238–44.

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2). https://doi.org/10.1590/S0103-21002007000200001.

Sagiv, S. K., Bruno, J. L., Baker, J. M., Palzes, V., Kogut, K., Rauch, S., Gunier, R., Mora, A. M., Reiss, A. L., & Eskenazi, B. (2019). Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proceedings of the National Academy of Sciences, 116(37), 18347–18356. https://doi.org/10.1073/pnas.1903940116

Sagiv, S. K., Harris, M. H., Gunier, R. B., Kogut, K. R., Harley, K. G., Deardorff, J., Bradman, A., Holland, N., & Eskenazi, B. (2018). Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. Environmental Health Perspectives, 126(4), 047012. https://doi.org/10.1289/ehp2580

Van den Neucker K., Vanderstraeten G., De Muynck M., De Wilde V. (1991). The neurophysiologic examination in organophosphate ester poisoning. Case report and review of the literature. PubMed, 31(8), 507–511.

Velmurugan, G., Ramprasath, T., Swaminathan, K., Mithieux, G., Rajendhran, J., Dhivakar, M., Parthasarathy, A., Babu, D. D. V., Thumburaj, L. J., Freddy, A. J., Dinakaran, V., Puhari, S. S. M., Rekha, B., Christy, Y. J., Anusha, S., Divya, G., Suganya, K., Meganathan, B., Kalyanaraman, N., & Vasudevan, V. (2017). Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biology, 18(1). https://doi.org/10.1186/s13059-016-1134-6

Vommaro A., Alves M., Natália V., Oliveira S., Gomes R., & Sintia M. (2010). Praguicidas Organofosforados E Sua Toxicidade. http://www.pergamum.univale.br/pergamum/tcc/Praguicidasorganofosforadosesuatoxicidad

Yoshimasu K., Kiyohara C., Takemura S., & Nakai K. (2014). A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology, 44, 121–31. https://doi.org/10.1016/j.neuro.2014.06.007

Zhang, J., Dai, H., Deng, Y., Tian, J., Zhang, C., Hu, Z., Bing, G., & Zhao, L. (2015). Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology, 336, 17–25. https://doi.org/10.1016/j.tox.2015.07.014

Published

31/01/2025

How to Cite

OSTERNACK, L. D.; SANTOS, W. M. dos .; VERONEZ, D. A. da L. . Organophosphate neurotoxicity and its relation to neurological changes and psychiatric disorders. Research, Society and Development, [S. l.], v. 14, n. 1, p. e10414148130, 2025. DOI: 10.33448/rsd-v14i1.48130. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48130. Acesso em: 18 may. 2025.

Issue

Section

Health Sciences