Chlorophyll-a monitoring in reservoirs on open source geospatial platforms: Case study – public water supply sources in the São Paulo Metropolitan Region (RMSP)
DOI:
https://doi.org/10.33448/rsd-v14i2.48227Keywords:
Temporal analysis; Cloud processing; Chlorophyll-a; Spectral indices; Graphic interface implementation; Eutrophisation.Abstract
The efficient management of water resources is a global challenge that demands innovative approaches to monitoring water quality. This objective study explores the application of Google Earth Engine (GEE) to monitor chlorophyll-a in dams operated by Sabesp, using images from the Sentinel-2 satellite. It was estimated using the OC2_490 algorithm and the Tri-band index (TBDO) in eutrophic environments. The results showed seasonal variations, influenced by climatic factors and human activities. The methodology used enabled a detailed analysis of variations in chlorophyll-a, essential for evaluating phytoplankton dynamics in dams. Although some representations present missing data, others provided robust information, revealing seasonal patterns, with notable peaks in chlorophyll-a in June, possibly related to algal blooms. The GEE platform, with its cloud processing capability, has been declared an effective tool for large-scale continuous water quality monitoring.
References
Belico, J. C. B. (2017) Impactos de eventos chuvosos na dinâmica físico-química e biológica em reservatórios urbanos estudo de caso: Lagoa da Pampulha. 203 f. Dissertação (Mestrado) - Curso de Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMG, Saneamento, Meio Ambiente e Recursos Hídricos, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 2017. https://www.smarh.eng.ufmg.br/defesas/1231M.PDF.
Bielenki JR, C.; Barbassa, A. P. (2012) Geoprocessamento e Recursos Hídricos: Aplicações Práticas. São Carlos: EdUFSCar. 257 pp.
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS). Climate Hazard Center – UC Santa Bárbara. (2024) https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs/.
Companhia de Saneamento Básico do Estado de São Paulo (Sabesp) (2024). Prêmio Empreendedor, modalidade Ideia: MONITORAMENTO AMBIENTAL (chl-a) Utilizando imagens de satélite: praticidade em abordagens temporais. [mensagem pessoal] Mensagem recebida por: . em: 16 set. 2024.
COPERNICUS Open Access HUB. Sentinel-2 (2024). https://scihub.copernicus.eu/dhus.
Dall’olmo, G., Boss, E., Behrenfeld, M. J., & Westberry, T. K. (2012). Particulate optical scattering coefficients along an Atlantic Meridional Transect, Opt. Express, 20(19), 21532-21551.
European Space Agency (ESA). (2024). Copernicus Sentinel-2. https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
Gitelson, A., Dall'olmo, G., Moses, W., & Rundquist, D. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 115(2), 339-351.
Gorelick, N., et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.
Gorelick, N., I. & Masek, J. G. (2018). Data Cubes for Analysis of Remote Sensing Data. Patent No. US20180252476A1.
Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1).
Harmel, Robert Daren; Preisendanz, Heather Elise; King, Kevin Wayne; Busch, Dennis; Birgand, Francois; Sahoo, Debabrata. (2023). A Review of Data Quality and Cost Considerations for Water Quality Monitoring at the Field Scale and in Small Watersheds. Water, [S.L.], 15(17), 3110. MDPI AG. http://dx.doi.org/10.3390/w15173110. Disponível em: https://www.mdpi.com/2073-4441/15/17/3110.
Instituto Nacional de Meteorologia do Brasil – INMET. (2024). Dados Meteorológicos Estações Automáticas.
https://tempo.inmet.gov.br/TabelaEsta coes/A001
MapBiomas – Coleção 9.0 da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. (2024). http://mapbiomas.org/o-projeto
Pandey, A., Singh, G., Chowdary, V. M., Behera, M. D., Prakash, A. J., & Singh, V. P. (2022). Overview of geospatial technologies for land and water resources management. In: Geospatial technologies for land and water resources management, Springer, Cham, pp. 1–16.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM
Pereira-Sandoval, M., et al. (2019). Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2. Limnetica, 38(1), 471-487. DOI: 10.23818/limn.38.27.
Prasai, Ritika et al. (2021) Application of Google earth engine python API and NAIP imagery for land use and land cover classification: a case study in florida, usa. Ecological Informatics, [S.L.], 66, 101474. Elsevier BV.
http://dx.doi.org/10.1016/j.ecoinf.2021.101474. https://www.sciencedirect.com/science/article/abs/pii/S157495412100265X.
Salgado-Hernanz, P. M.; Racault, M.-F.; Font-Muñoz, J. S.; Basterretxea, G. (2019). Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sensing of Environment, 221, 50–64.
Salls, Wilson B. et al. (2024). Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes. Remote Sensing, Grenbelt, 1977(16), 1-29. https://doi.org/10.3390/rs16111977.
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.
Souza Junior, C. M., Kirchhoff, F. T., Oliveira, B. C., Ribeiro, J. G. & Sales, M. H. (2019). Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water (Basel), 3(11), 566. http://dx.doi.org/10.3390/w11030566.
Zhu, Z., QIU, S., & YE, S. (2022) Remote sensing of land change: a multifaceted perspective. Remote Sensing Of Environment, [S.L.], 282, 113266. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2022.113266. https://www.sciencedirect.com/science/article/pii/S0034425722003728.
Yang, H. et al. (2022) A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sensing, China, 1770(14), 1-21.
https:// doi.org/10.3390/rs14081770.
Yogi, Fernando; Stanganini, Fabio Noel; Tonello, Kelly Cristina; Isa, Selma Setsumi. (2023) Evaluation of the potential for carbon sink and association with land occupation. Journal Of Water And Climate Change, [S.L.], 14(2), 401-420. IWA Publishing.
https://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.296/1170486/jwc2023296.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fernando Yogi; Fabio Noel Stanganini

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.