Exploratory analysis and statistical modeling of clinical data in patients with heart failure

Authors

DOI:

https://doi.org/10.33448/rsd-v14i2.48317

Keywords:

Regression Analysis; Stroke Volume; Heart Failure; Mortality.

Abstract

Heart failure is one of the leading causes of global mortality, requiring effective strategies for prevention and treatment. This study aims to conduct an exploratory analysis of 299 patients with heart failure and investigate the influence of different clinical variables through statistical modeling. Statistical models, including linear and logistic regression, were applied to assess the impact of variables such as age, serum creatinine, serum sodium, hypertension, anemia, and smoking on ejection fraction (stroke volume) and patient mortality. The results indicated that serum sodium levels significantly influence ejection fraction, while age, serum creatinine, and ejection fraction showed a statistically significant relationship with mortality risk. The findings of this study are consistent with previous literature, emphasizing the importance of laboratory biomarkers in the prognostic evaluation of heart failure. Identifying these factors can contribute to clinical decision-making and the development of more targeted therapeutic approaches, ultimately improving survival and quality of life for affected patients.

References

American Heart Association. (2025). Cardiovascular health and lifestyle changes. American Heart Association. https://www.heart.org/

Avezum, Á., Maia, L. N., & Nakazone, M. (2012). Cenário das doenças cardiovasculares no mundo moderno. In Manual de cardiologia (pp. 1–5).

Cleveland, W. S. (2025). The elements of graphing data. Hobart Press.

Dua, D., & Graff, C. (2019). UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu/ml

Dunlay, S. M., Roger, V. L., & Redfield, M. M. (2017). Epidemiology of heart failure with preserved ejection fraction. Nature Reviews Cardiology, 14(10), 591-602. https://doi.org/10.1038/nrcardio.2017.65

Gallo, G., & Savoia, C. (2024). Hypertension and heart failure: From pathophysiology to treatment. International Journal of Molecular Sciences, 25(12), 6661. https://doi.org/10.3390/ijms25126661

Groenewegen, A., Rutten, F. H., Mosterd, A., & Hoes, A. W. (2020). Epidemiology of heart failure. European Journal of Heart Failure, 22(8), 1342-1356. https://doi.org/10.1002/ejhf.1858

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: with applications in R. Springer.

https://doi.org/10.1007/978-1-0716-1418-1

Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., ... & Bax, J. J. (2020). 2020 ESC guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41(3), 407-477. https://doi.org/10.1093/eurheartj/ehz425

McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., ... & Seferović, P. M. (2021). 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(36), 3599-3726. https://doi.org/10.1093/eurheartj/ehab368

McMurray, J. J. V., Solomon, S. D., Inzucchi, S. E., Køber, L., Kosiborod, M. N., Martinez, F. A., ... & De Boer, R. A. (2022). Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine, 381(21), 1995-2008. https://doi.org/10.1056/NEJMoa1911303

Mebazaa, A., Yilmaz, M. B., Levy, P., Ponikowski, P., Peacock, W. F., Laribi, S., ... & Harjola, V. P. (2021). Recommendations on pre-hospital & early hospital management of acute heart failure. European Journal of Heart Failure, 23(7), 1005-1022. https://doi.org/10.1002/ejhf.2238

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Précoma DB, Oliveira GMM, Simão AF, Dutra OP, Coelho OR, Izar MCO, et al. Updated cardiovascular prevention guideline of the Brazilian Society of Cardiology - 2019. Arq Bras Cardiol 2019; 113(4): 787-891. https://doi.org/10.5935/abc.20190204

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Redfield, M. M. (2016). Heart failure with preserved ejection fraction. The New England Journal of Medicine, 375(19), 1868–1877. https://doi.org/10.1056/NEJMcp1511175

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. 2ed. Editora Erica.

Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Baker-Smith, C. M., Beaton, A. Z., Boehme, A. K., Buxton, A. E., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Fugar, S., Generoso, G., Heard, D. G., Hiremath, S., Ho, J. E., ... Martin, S. S. (2023). Heart disease and stroke statistics—2023 update: A report from the American Heart Association. Circulation, 147(8). https://doi.org/10.1161/CIR.0000000000001123

Vieira, S. (2021). Introdução à bioestatística. Ed. GEN/Guanabara Koogan.

World Health Organization. (2024, Jan 19). Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases

Ziaeian, B., & Fonarow, G. (2016). Epidemiology and aetiology of heart failure. Nature Reviews Cardiology, 13(6), 368–378. https://doi.org/10.1038/nrcardio.2016.25

Published

27/02/2025

How to Cite

MANTOVANI, D.; PEREIRA, L. M. de A.; SOARES, N. C. G.; PEREIRA, L. C. de L.; URTIGA, M. J. C.; GUEDES, T. V. S. do M.; SILVA JÚNIOR, J. G. da. Exploratory analysis and statistical modeling of clinical data in patients with heart failure. Research, Society and Development, [S. l.], v. 14, n. 2, p. e12814248317, 2025. DOI: 10.33448/rsd-v14i2.48317. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48317. Acesso em: 2 apr. 2025.

Issue

Section

Health Sciences