Pharmaceutical innovations used to fight multidrug-resistant bacterial infections
DOI:
https://doi.org/10.33448/rsd-v14i3.48435Keywords:
Pharmaceutical innovation; Multidrug-resistant bacteria; Drugs.Abstract
Pharmaceutical innovation is a fundamental process that involves the development, research and introduction of new drugs and therapies onto the market. This includes the discovery of new molecules, improvements in drug delivery technologies, enhancement of existing formulations and the search for new treatments for various diseases. One of the current challenges in this field is antimicrobial resistance, especially in relation to multi-resistant bacteria. To meet these challenges, innovation in the discovery and development of new drugs is essential. This is crucial for the development of new antibiotics and therapies capable of effectively combating multidrug-resistant bacteria. In addition, strategies to prevent and control antimicrobial resistance are key to ensuring the continued effectiveness of drugs over time. An important approach to gathering up -to-date information and developing better therapeutic options against multidrug-resistant bacteria is to search for the latest literature. In this context, a study was carried out to compile the most recent pharmaceutical innovations used to combat these infections by multidrug- resistant bacteria. The methodology used was a literature review of academic databases, with specific exclusion criteria to e nsure the relevance of the selected studies. This literature review covered several innovative techniques, such as computational modeling, technologies using nanocomposites, gold and silver nanoparticles, natural extracts, among others. These techniques represent promising approaches for the development of new antimicrobial treatments that can be effective against multidrug- resistant bacteria, complementing or replacing conventional treatments.
References
Abbasi Montazeri, E., Saki, M., Savari, M., Meghdadi, H., & Akrami, S. (2024). Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BMC Infectious Diseases, 24(1), 1117. https://doi.org/10.1186/s12879-024-10018-7.
Abdelaziz, E., et al. (2023). Synthesis and in-vitro anti-proliferative with antimicrobial activity of new coumarin containing heterocycles hybrids. Scientific Reports, 13(1), 22791. https://doi.org/10.1038/s41598-023-29543-3.
Berscheid, A., Straetener, J., Schilling, N. A., Ruppelt, D., Konnerth, M. C., Schittek, B., Krismer, B., Peschel, A., Steinem, C., Grond, S., & Brötz-Oesterhelt, H. (2024). The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides. mBio, 15(9), e0057824. https://doi.org/10.1128/mbio.00578-24.
BNDES SECTORIAL (2005). https://web.bndes.gov.br/bib/jspui/bitstream/1408/2686/1/BS%2022%20Inovação%20Farmacêutica_P.pdf
Casarin, S. T., et al. (2020). Tipos de revisão de literatura: Considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924
Centers for Disease Control and Prevention (CDC). (2019). Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services, CDC.
Cruz, A. A. da, et al. (2023). Nanocomposite based on bacterial nanocellulose and titanate nanotube functionalized through the multicomponent Ugi reaction for medical application (Master's dissertation). Federal Technological University of Paraná.
Duzino, S. P. M. da S. (2023). In silico evaluation of the antibacterial potential of flavonoids from araçá leaves (Psidium Guineense SW). Figueira, C. S. (2018). Biossíntese e caracterização de nanopartículas de ouro produzidas com extrato aquoso de folhas de Anacardium occidentale L. (Dissertação de mestrado, Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Ceará, Sobral, CE). Universidade Federal do Ceará. http://repositorio.ufc.br/handle/riufc/34957.
Ferreira, N. S., et al. (2023). Antimicrobial synergism and antibiofilm activities of Mentha piperita L. and Eucalyptus globulus essential oils against Gram-positive cocci. Scientia Plena, 19(8).
Martin, A. L. de A. R. (2023). In vitro and in silico effect of coumarin derivatives on the inhibition of MepA and NorA efflux pump function in Staphylococcus aureus.
Mousa, A. B., et al. (2023). Zinc oxide nanoparticles promise anticancer and antibacterial activity in ovarian cancer. Pharma ceutical Research, 40(10), 228. https://doi.org/10.1007/s11095-023-03485-9.
Murray, C. J. L., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0.
Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., et al. (2024). Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. The Lancet, 404, 1199-1226. https://doi.org/10.1016/s0140-6736(24)01867-1.
Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: A systematic literature review. Article number: 58. https://doi.org/10.1186/s41182-018-0086-1.
Oliveira, S. B. de, et al. (2023). Identification of antimicrobial molecules in the venom of Bothrops alternatus. Final course work, PUC Goiás. https://repositorio.pucgoias.edu.br/jspui/handle/123456789/7154.
Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nature Reviews Drug Discovery, 10(6), 428-438. https://doi.org/10.1038/nrd3405.
Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. Santa Maria/RS: Ed. UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Pinto, L. P. de O. B., & Oliveira, D. E. (2023). Hierarchical virtual screening of potential bioactives with antibiotic activ ity from polyoxygenated dibenzofurans against methicillin-resistant Staphylococcus aureus (MRSA).
Rammali, S., et al. (2024). Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Scientific Reports, 14(1), 3359. https://doi.org/10.1038/s41598-024-29934-y
Rodrigues, J. A. O. (2023). Complexos ternários de cobre(II) com 1,10-fenantrolina e aminoácidos: síntese, caracterização estrutural e avaliação deatividades biológicas (Dissertação de mestrado, Universidade Federal do Maranhão, São Luís, MA). Universidade Federal do Maranhão. https://tede2.ufma.br/jspui/bitstream/tede/4794/2/JESSICARODRIGUES.pdf
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20 (2). https://doi.org/10.1590/S0103- 21002007000200001
Rukmana, R. M., Sawal, A. A. D., & Wibawa, D. A. A. (2023). Combination of antibacterial activity of ethanol extract of meniran leaves and kenikir leaves against Shigella dysenteriae. In 1st International Conference for Health Research-BRIN (ICHR 2022) (pp. 7-20). Atlantis Press. https://doi.org/10.2991/978-94-6463-682-2_2.
Ruppelt, D., Trollmann, M. F. W., Dema, T., Wirtz, S. N., Flegel, H., Mönnikes, S., Grond, S., Böckmann, R. A., & Steinem, C. (2024). The antimicrobial fibupeptide lugdunin forms water-filled channel structures in lipid membranes. Nature Communications, 15(1), 3521. https://rdcu.be/ecvWN
Santana, J. E. G., et al. (2023). Comparative antibacterial and efflux pump inhibitory activity of isolated nerolidol, farnesol, and α-bisabolol sesquiterpenes and their liposomal nanoformulations. Molecules, 28(22), 7649. https://doi.org/10.3390/molecules28227649.
Santos, D. A. O. (2023). Síntese de nanopartículas metálicas de prata (AgNPs) e ouro (AuNPs) empregando extrato de Spondias mombin L. para potencial aplicação na medicina veterinária (Dissertação de mestrado, Universidade Federal do Amazonas, Manaus, AM). Universidade Federal do Amazonas. https://tede.ufam.edu.br/handle/tede/10058
Santos, J. L. (2022). Innovation in Pharmaceutical Assistance. Brazilian Journal of Pharmaceutical Sciences. Brazilian Journal of Pharmaceutical Sciences, 58 (e19724). https://doi.org/10.1590/s2175-97902022e19724.
Silva, A. P. S., et al. (2023). Synthesis, antibacterial evaluation and study of the pharmacokinetic, bioactive and toxicity profile of (2R)-3- butin-2-yl 2, 3, 4, 6-tetra-O-acetyl-β-D-glycopyranoside.
Silva, E. F., et al. (2024). Lipid nanoparticles based on natural matrices with activity against multidrug resistant bacterial species. Frontiers in Cellular and Infection Microbiology, 13, 1328519. https://doi.org/10.3389/fcimb.2023.1328519.
Sindelo, A., Sen, P., & Nyokong, T. (2023). Photoantimicrobial activity of Schiff-base morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms. Photodiagnosis and Photodynamic Therapy, 42, 103519. https://doi.org/10.1016/j.pdpdt.2023.103519.
Krakhotkin, D., Iglovikov, N., Blecher, G., Chernylovskyi, V., Greco, F., Gayvoronskaya, S. A., & El Meliegy, A. (2025). Bacteriophage therapy in women with chronic recurrent cystitis caused by multidrug-resistant bacteria: A prospective, observational, comparative study. Current Urology, 19(2), 125-132. https://doi.org/10.1097/CU9.0000000000000268
Torres Salazar, B. O., Dema, T., Schilling, N. A., Janek, D., Bornikoel, J., Berscheid, A., Elsherbini, A. M. A., Krauss, S., Jaag, S. J., Lammerhofer, M., Alqahtani, N., Horsburgh, M. J., Weber, T., Beltrán-Beleña, J. M., Brötz-Oesterhelt, H., Grond, S., Krismer, B., & Peschel, A. (2024). Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus. Nature Microbiology, 9(1), 200-213. https://doi.org/10.1038/s41564-023-01544-2
Vialetto, E., Miele, S., Goren, M. G., Yu, J., Yu, Y., Collias, D., Beamud, B., Osbelt, L., Lourenço, M., Strowig, T., Brisse, S., Barquist, L., Qimron, U., Bikard, D., & Beisel, C. L. (2024). Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide-, and strain-dependent features influencing antimicrobial activity. Nucleic Acids Research, 52(10), 6079-6091. https://academic.oup.com/nar/article/52/10/6079/7658048
Shim, H. (2023). Three innovations of next-generation antibiotics: Evolvability, specificity, and non-immunogenicity. Antibiotics (Basel), 12(2), 204. https://doi.org10.3390/antibiotics12020204. PMID: 36830114; PMCID: PMC9952447.
World Health Organization (WHO). (2024). Global research agenda for antimicrobial resistance in human health . Geneva: World Health Organization.
Zhang, Y., Chowdhury, S., Rodrigues, J. V., & Shakhnovich, E. (2021). Development of antibacterial compounds that constrain evolutionary
pathways to resistance. eLife, 10, e64518. https://doi.org/10.7554/eLife.64518.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nathalie de Sena Pereira; Luiz da Costa Nepomuceno Filho; Andressa Noronha Barbosa da Silva; Denis Dantas da Silva; Luanderson Cardoso Pereira; Luana Nascimento da Silva; Guilherme Ribeiro de Carvalho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.