Application of neural networks in the steel industry
DOI:
https://doi.org/10.33448/rsd-v14i4.48712Keywords:
Six Sigma; Neural Network; Optimization; Foundation; Lamination.Abstract
The objective of this article is to present a case study of applied research on the implementation of deep neural networks in the rolling process of a steel mill. The study is developed within the context of Industry 4.0 and is based on the Lean Six Sigma methodology to address a real-life problem related to defects in products derived from the rolling process. The methodology includes the application of various quality tools to identify the root cause and propose methods that offer an innovative solution. Through the design, training, and evaluation of a multi-layer neural network, an improvement in the classification of conforming (prime) and non-conforming (scrap) products was achieved, reaching an efficiency close to 85%. The study demonstrates how artificial intelligence can be a viable solution for complex industrial processes involving multiple variables, providing significant improvements in quality, efficiency, and decision-making.
References
Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189. https://doi.org/10.3390/su11010189
Acevedo, E., Serna, A., & Serna, E. (2017). Principios y características de las redes neuronales artificiales. Desarrollo e innovación en ingeniería, 173.
Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., ... & Alshamrani, S. S. (2022). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256
Aguirre, J., García, F., Ramírez, C., Floreano, S., Guarda, T., Sanchez, I., ... & Sanchez, C. (2021). Aplicación de la inteligencia artificial en la industria automotriz. Revista Ibérica de Sistemas e Tecnologias de Informação, (E42), 149-158.
Arora, A., Kacker, R., & Kumar, S. S. (2024). Artificial intelligence role, techniques, and optimization algorithms in industrial-level applications. Artificial Intelligence and Their Applications, 20-30. https://doi.org/10.58532/nbennurch337
Balmer, R. E., Levin, S. L., & Schmidt, S. (2020). Artificial Intelligence Applications in Telecommunications and other network industries. Telecommunications Policy, 44(6), 101977. https://doi.org/10.1016/j.telpol.2020.101977
Boden, M. A. (2018). Artificial intelligence: A very short introduction. Oxford University Press. https://doi.org/10.1093/actrade/9780199602919.001.0001
Bonilla, L., & Bonilla, L. (2024). Qué es el Deep learning y cómo funciona. Desafíos y retos. Data Center Market. https://www.datacentermarket.es/dcm-xl/que-es-el-deep-learning-y-como-funciona-desafios-y-retos/
Díaz-Ramírez, J. (2021). Aprendizaje automático y aprendizaje profundo. Ingeniare. Revista chilena de ingeniería, 29(2), 180-181. http://dx.doi.org/10.4067/S0718-33052021000200180
Geng, X., Wang, H.-H., Wang, S., Gao, J., & Ma, X. (2023). Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. https://doi.org/10.1002/mgea.10
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Graglia, M. A. V., & Von Huelsen, P. G. (2020). The sixth wave of innovation: Artificial intelligence and the impacts on employment. Journal on Innovation and Sustainability RISUS, 11(1), 3-17.
Hemmati-Sarapardeh, A., Larestani, A., Menad, N. A., & Hajirezaie, S. (2020). Applications of artificial intelligence techniques in the petroleum industry. Gulf Professional Publishing.
Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456. https://doi.org/10.1016/j.eswa.2022.119456
Jiménez-Sánchez, D., & Arzola-Ruiz, J. (2017). Redes neuronales regularizadas aplicadas a la estimación de propiedades mecánicas de perfiles de acero. Ingeniería Mecánica, 20(3), 115-121.
Li, B. H., Hou, B. C., Yu, W. T., Lu, X. B., & Yang, C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885
Mexico Industry. (2023). Industria siderúrgica en México con potencial de crecimiento. https://mexicoindustry.com/noticia/industria-siderurgica-en-mexico-con-potencial-de-crecimiento
Ojeda-Roldán, Á., Gassner, G., Schlautmann, M., Acevedo Galicia, L. E., Andreiana, D. S., Heiskanen, M., ... & del Real Torres, A. (2022). Optimisation of Operator Support Systems through Artificial Intelligence for the Cast Steel Industry. Journal of manufacturing and materials processing, 6(2), 34. https://doi.org/10.3390/jmmp6020034
Ometto, L., Challapalli, S., Polo, G., Cestari, A., Villagrossi, M., Sandri, E., & Pellegrini, A. (2018). Successful Use Case Applications of Artificial Intelligence in the Steel Industry.
Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM. Yin, R.K. (2015). O estudo de caso. Porto Alegre: Bookman.
Rouhiainen, L. (2018). Inteligencia artificial. Editorial Alienta.
Shrivastava, A., Pandey, A., Singh, N., Srivastava, S., Srivastava, M., & Srivastava, A. (2024). Artificial Intelligence (AI): Evolution, Methodologies, and Applications. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.61241
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 José de Jesús Calderón-Sánchez; Rafael Granillo-Macías; Francisca Santana Robles; Héctor Rivera-Gómez

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.