Application of neural networks in the steel industry

Authors

DOI:

https://doi.org/10.33448/rsd-v14i4.48712

Keywords:

Six Sigma; Neural Network; Optimization; Foundation; Lamination.

Abstract

The objective of this article is to present a case study of applied research on the implementation of deep neural networks in the rolling process of a steel mill. The study is developed within the context of Industry 4.0 and is based on the Lean Six Sigma methodology to address a real-life problem related to defects in products derived from the rolling process. The methodology includes the application of various quality tools to identify the root cause and propose methods that offer an innovative solution. Through the design, training, and evaluation of a multi-layer neural network, an improvement in the classification of conforming (prime) and non-conforming (scrap) products was achieved, reaching an efficiency close to 85%. The study demonstrates how artificial intelligence can be a viable solution for complex industrial processes involving multiple variables, providing significant improvements in quality, efficiency, and decision-making.

References

Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189. https://doi.org/10.3390/su11010189

Acevedo, E., Serna, A., & Serna, E. (2017). Principios y características de las redes neuronales artificiales. Desarrollo e innovación en ingeniería, 173.

Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., ... & Alshamrani, S. S. (2022). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256

Aguirre, J., García, F., Ramírez, C., Floreano, S., Guarda, T., Sanchez, I., ... & Sanchez, C. (2021). Aplicación de la inteligencia artificial en la industria automotriz. Revista Ibérica de Sistemas e Tecnologias de Informação, (E42), 149-158.

Arora, A., Kacker, R., & Kumar, S. S. (2024). Artificial intelligence role, techniques, and optimization algorithms in industrial-level applications. Artificial Intelligence and Their Applications, 20-30. https://doi.org/10.58532/nbennurch337

Balmer, R. E., Levin, S. L., & Schmidt, S. (2020). Artificial Intelligence Applications in Telecommunications and other network industries. Telecommunications Policy, 44(6), 101977. https://doi.org/10.1016/j.telpol.2020.101977

Boden, M. A. (2018). Artificial intelligence: A very short introduction. Oxford University Press. https://doi.org/10.1093/actrade/9780199602919.001.0001

Bonilla, L., & Bonilla, L. (2024). Qué es el Deep learning y cómo funciona. Desafíos y retos. Data Center Market. https://www.datacentermarket.es/dcm-xl/que-es-el-deep-learning-y-como-funciona-desafios-y-retos/

Díaz-Ramírez, J. (2021). Aprendizaje automático y aprendizaje profundo. Ingeniare. Revista chilena de ingeniería, 29(2), 180-181. http://dx.doi.org/10.4067/S0718-33052021000200180

Geng, X., Wang, H.-H., Wang, S., Gao, J., & Ma, X. (2023). Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. https://doi.org/10.1002/mgea.10

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Graglia, M. A. V., & Von Huelsen, P. G. (2020). The sixth wave of innovation: Artificial intelligence and the impacts on employment. Journal on Innovation and Sustainability RISUS, 11(1), 3-17.

Hemmati-Sarapardeh, A., Larestani, A., Menad, N. A., & Hajirezaie, S. (2020). Applications of artificial intelligence techniques in the petroleum industry. Gulf Professional Publishing.

Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456. https://doi.org/10.1016/j.eswa.2022.119456

Jiménez-Sánchez, D., & Arzola-Ruiz, J. (2017). Redes neuronales regularizadas aplicadas a la estimación de propiedades mecánicas de perfiles de acero. Ingeniería Mecánica, 20(3), 115-121.

Li, B. H., Hou, B. C., Yu, W. T., Lu, X. B., & Yang, C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885

Mexico Industry. (2023). Industria siderúrgica en México con potencial de crecimiento. https://mexicoindustry.com/noticia/industria-siderurgica-en-mexico-con-potencial-de-crecimiento

Ojeda-Roldán, Á., Gassner, G., Schlautmann, M., Acevedo Galicia, L. E., Andreiana, D. S., Heiskanen, M., ... & del Real Torres, A. (2022). Optimisation of Operator Support Systems through Artificial Intelligence for the Cast Steel Industry. Journal of manufacturing and materials processing, 6(2), 34. https://doi.org/10.3390/jmmp6020034

Ometto, L., Challapalli, S., Polo, G., Cestari, A., Villagrossi, M., Sandri, E., & Pellegrini, A. (2018). Successful Use Case Applications of Artificial Intelligence in the Steel Industry.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Editora UAB/NTE/UFSM. Yin, R.K. (2015). O estudo de caso. Porto Alegre: Bookman.

Rouhiainen, L. (2018). Inteligencia artificial. Editorial Alienta.

Shrivastava, A., Pandey, A., Singh, N., Srivastava, S., Srivastava, M., & Srivastava, A. (2024). Artificial Intelligence (AI): Evolution, Methodologies, and Applications. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.61241

Published

30/04/2025

How to Cite

CALDERÓN-SÁNCHEZ, J. de J.; GRANILLO-MACÍAS, R.; SANTANA ROBLES, F.; RIVERA-GÓMEZ, H. Application of neural networks in the steel industry. Research, Society and Development, [S. l.], v. 14, n. 4, p. e8014448712, 2025. DOI: 10.33448/rsd-v14i4.48712. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48712. Acesso em: 4 jun. 2025.

Issue

Section

Engineerings