Physical-mechanical properties of polymer-fiber composites produced by pressed molding

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5063

Keywords:

Plastic-wood; Wood flour; Coconut fiber; LDPE.

Abstract

The objective was to evaluate the production process of polymer-fiber composites, by means of pressing, using low density polyethylene (LDPE) reinforced with wood flour in two granulometries and coconut fibers. The physical and mechanical properties of the molds produced were evaluated. In the process, it was used as a LDPE matrix in a virgin and recycled mixture reinforced with “thick” pine wood flour obtained in forestry industries in the city of Irati-PR, “fine” pine wood flour and coconut fiber provided by Inbrasfarma Ltda. The LDPE was mixed with each reinforcement, together with a coupling agent (Polybond 3009), and the mixtures were then processed using a twin screw extruder. The mixture was molded by compression, resulting in a series of pressed specimens, which were subjected to tensile, bending and hardness tests. The evaluation of the results showed that the addition of wood reinforcement to plastic, in general, increased the mechanical properties of the composite while the coconut fiber reinforcement was favorable only to flexion. There were significant differences in the properties of the composites due to the studied compositions.

References

Addivant corporation. (2013). Technical information Polybond® 3009. Disponível em: https://www.brenntag.com/media/documents/bsi/product_data_sheets/material_science/addivant/polybond_3009_pds.pdf.

Agnes, E. A., Mello, T. V., Hillig, E. & Myahara, R. Y. (2020). Cellulose pulp for wood polymer composites production. Floresta, 1(51). No prelo.

Ali, M., & Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in environmental research, 5(2), 175-196.

Ashori, A., & Nourbakhsh, A. (2010). Reinforced polypropylene composites: effects of chemical compositions and particle size. Bioresource technology, 101(7), 2515-2519.

ASTM International. (2014). Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM international.

Braskem (2015). Datasheet Revision 7 (Apr/15). Low Density Polyethylene EB853 / 72. Disponível em: https://www.braskem.com.br/cms/Principal/ModuloProduto/DownloadFolhaDados?idFolha=KWgkPAzcqNs=&idIdioma=7OddVzA6kuw=&idTipo=YrItVniimrc=&idProduto=qUDjV8F6G3A=&pasta=T46EDfq+gkM=.

Cabral, M. M. S., de Souza Abud, A. K., dos Santos Rocha, M. S. R., Almeida, R. M. R. G., & Gomes, M. A. (2017). Composição da fibra da casca de coco verde in natura e após pré-tratamentos químicos. Engevista, 19(1), 99-108.

Callister Junior, W. D., & Rethwisch, D. G. (2002). Ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC, 589, 249.

De Guamá, f. F. M. C., Costa, R., Rocha, H. L., Isensee, F. V., & Futuro, L. L. (2008). Lixo Plástico-de sua produção até a madeira plástica. XXVIII Encontro Nacional de Engenharia de Produção. Anais. Rio de Janeiro: ABEPRO.

Hillig, É. (2006). Viabilidade técnica de produção de compósitos de polietileno (HDPE) reforçados com resíduos de madeira e derivados das indústrias moveleiras.

Morais, S. A. L. D., Nascimento, E. A. D., & Melo, D. C. D. (2005). Análise da madeira de Pinus oocarpa parte I: estudo dos constituintes macromoleculares e extrativos voláteis. Revista Árvore, 29(3), 461-470.

Standard, B., & ISO, B. (2001). Plastics—Determination of flexural properties.

Standard, B., & ISO, B. (2012). Plastics— Determination of Tensile Properties.

Oliveira, T. Á., Teixeira, A., Mulinari, D. R., & Goulart, S. A. S. (2017). Avaliação do uso de agente compatibilizante no comportamento mecânico dos compósitos PEBD reforçados com fibras de coco verde. Cadernos UniFOA, 5(14), 11-17.

Robin, J., & Breton, Y. (2001). Reinforcement of recycled polyethylene with wood fibers heat treated. Journal of reinforced plastics and composites, 20(14-15), 1253-1262.

Simplás. Seminário Internacional sobre WPC. Boletim Informativo do Simplás. Sindicato das Indústrias de Material Plástico do Nordeste Gaúco, n.38, Dezembro, 2008.

Soury, E., Behravesh, A. H., Esfahani, E. R., & Zolfaghari, A. (2009). Design, optimization and manufacturing of wood–plastic composite pallet. Materials & Design, 30(10), 4183-4191.

Teixeira, M. G. (2005). Aplicação de conceitos da ecologia industrial para a produção de materiais ecológicos: o exemplo do resíduo de madeira. Salvador: Universidade Federal da Bahia.

Winandy, J. E., Stark, N. M., & Clemons, C. M. (2004). Considerations in recycling of wood-plastic composites. In 5th Global Wood and Natural Fibre Composites Symposium, April 27-28, 2004, in Kassel, Germany:[9] Pages..

Younquist, J. (1995). Unlikely partners. The marriage of wood and nonwood materials. Forest.

Published

21/06/2020

How to Cite

AGNES, Érick A.; HILLIG, Éverton. Physical-mechanical properties of polymer-fiber composites produced by pressed molding. Research, Society and Development, [S. l.], v. 9, n. 8, p. e29985063, 2020. DOI: 10.33448/rsd-v9i8.5063. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5063. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences