An application of Particle Swarm Optimization (PSO) algorithm with daily precipitation data in Campina Grande, Paraíba, Brazil
DOI:
https://doi.org/10.33448/rsd-v9i8.5841Keywords:
PSO; Precipitation; Campina Grande.Abstract
We study the daily precipitation in the municipality of Campina Grande, estimating the parameters of Gamma, Log-Normal, and Weibull distributions. To evaluate the parameter estimators, we compared the Particle Swarm Optimization (PSO) versus Maximum Likelihood Estimation (MLE) to analyze and understand the behaviour of the daily precipitation in Campina Grande. In most cases, our results show evidence that the PSO algorithm is an efficient and robust technique. Notwithstanding, the algorithm also presents an efficient parameter estimation due to its fast convergence.
References
Abbasi, B., Jahromi, A. H. E., Arkat, J., & Hosseinkouchack, M. (2006). Estimating the parameters of Weibull distribution using simulated annealing algorithm. Applied Mathematics and Computation, 183(1), 85-93.
Bardolle, F., Delay, F., Bichot, F., Porel, G., & Dörfliger, N. (2014). A Particle Swarm
Optimization for Parameter Estimation of a Rainfall-Runoff Model. In Mathematics of Planet
Earth (pp. 153-156). Springer, Berlin, Heidelberg.
Ben-Zvi, A. (2009). Rainfall intensity–duration–frequency relationships derived from large partial duration series. Journal of Hydrology, 367(1-2), 104-114.
Beskow, S., Caldeira, T. L., de Mello, C. R., Faria, L. C., & Guedes, H. A. S. (2015). Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies, 4, 123-133.
Carneiro, T. C., Melo, S. P., Carvalho, P. C., & Braga, A. P. D. S. (2016). Particle swarm optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region. Renewable energy, 86, 751-759.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250.
Cho, H. K., Bowman, K. P., & North, G. R. (2004). A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. Journal of Applied meteorology, 43(11), 1586-1597.
Do Nascimento, K. K. F., dos Santos, F. S., da Silva Jale, J., & Ferreira, T. A. E. (2020a). Comparison of methods and distribution models for the modeling of wind speed data in the municipality of Petrolina, Northeast Brazil. Research, Society and Development, 9(7), 308974221.
Do Nascimento, K. K. F., dos Santos, F. S., da Silva Jale, J., & Ferreira, T. A. E. (2020b). Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm. Research, Society and Development, 9(7), 285974216.
Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
Franco, C. S., Marques, R. F., Oliveira, A. S., & de Oliveira, L. F. (2014). Distribuição de probabilidades para precipitação máxima diária na Bacia Hidrográfica do Rio Verde, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(7), 735-741.
Fukuyama, Y. (2008). Fundamentals of particle swarm optimization techniques. Modern heuristic optimization techniques: theory and applications to power systems, 71-87.
Handoyo, S., Efendi, A., Jie, F., & Widodo, A. (2017). Implementation of particle swarm optimization (PSO) algorithm for estimating parameter of arma model via maximum likelihood method. Far East Journal of Mathematical Sciences, 102(7), 1337-1363.
Heo, J. H., Salas, J. D., & Boes, D. C. (2001). Regional flood frequency analysis based on a Weibull model: Part 2. Simulations and applications. Journal of hydrology, 242(3-4), 171-182.
Jakubcová, M., Máca, P., & Pech, P. (2015). Parameter estimation in rainfall-runoff
modelling using distributed versions of particle swarm optimization algorithm. Mathematical
Problems in Engineering, 2015.
Örkcü, H. H., Özsoy, V. S., Aksoy, E., & Dogan, M. I. (2015). Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison. Applied Mathematics and Computation, 268, 201-226.
Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology & Earth System Sciences, 17(1).
Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Methodology of cientific research.[e-Book]. Santa Maria City. UAB/NTE/UFSM Editors. Accessed on: May, 9th, 2020. Available at: https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_ Metodologia-Pesquisa-Cientifica. pdf.
Pereira, P. A., Cavalcante, J. I., Souza, W. M., & Galvíncio, J. D. (2016). Climate change and rainfall variability in the city of Campina Grande-PB: analysis from historical series of precipitation. Journal of Hyperspectral Remote Sensing, 6(3), 130-138.
Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-based systems, 56, 226-239.
Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine learning. Springer Science & Business Media.
Sugahara, S., Da Rocha, R. P., & Silveira, R. (2009). Non‐stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9), 1339-1349.
Taormina, R., & Chau, K. W. (2015). Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning
machines. Journal of hydrology, 529, 1617-1632.
Wilks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. journal of Hydrology, 210(1-4), 178-191.
Wong, G., Lambert, M. F., Leonard, M., & Metcalfe, A. V. (2010). Drought analysis using trivariate copulas conditional on climatic states. Journal of Hydrologic Engineering, 15(2), 129-141.
Yan, Z., Bate, S., Chandler, R. E., Isham, V., & Wheater, H. (2002). An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. Journal of Climate, 15(15), 2073-2088.
Yaseen, Z. M., Ebtehaj, I., Kim, S., Sanikhani, H., Asadi, H., Ghareb, M. I., ... & Shahid, S. (2019). Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water, 11(3), 502.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.