Biomass production and leaf nutrient content in Justicia pectoralis Jacq. with different types of fertilization
DOI:
https://doi.org/10.33448/rsd-v9i9.7040Keywords:
Medicinal plants; Tilo; Organomineral; Sustainability.Abstract
The objective of this work was to evaluate different sources of fertilization in the growth of the plant, accumulation of nutrients in the leaves of Justicia pectoralis Jacq. aiming at improving biomass production. The treatments consisted of three different fertilizations: organic (poultry manure), chemical and organomineral, plus the control (without fertilization), arranged in a randomized block design, with 18 repetitions per treatment in four blocks. At 100, 120, 150 and 180 days after transplantation, height and diameter were determined in ten plants in the useful area of each plot. In the last evaluation, the plants were harvested manually. Shoot biomass (g) and leaf nutrient content were evaluated. The statistical program used was Sisvar, and the data obtained were subjected to analysis of variance. The regression analysis was used for the biometric data of the plants and for the mineral concentration the averages were compared by the Tukey test (p <0.05). The different doses and sources of fertilization used in the cultivation of J. pectoralis influenced the length of the aerial part, plant diameter, dry biomass. J. pectoralis plants present different levels of nutrients in their leaf tissues, with the following accumulation order for macronutrients (g Kg-1): N> Ca> K> Mg> P> S; and for micronutrients (mg Kg-1): Fe> B> Mn> Zn> Cu. There was a positive influence of different fertilizations on plant growth in height, diameter and dry biomass, and organomineral fertilization provided greater plant development. Because it is a plant with a diversity of secondary metabolites and belonging to the flora of the Cerrado Biome, scientific research is still necessary to enable the production in scale avoiding extraction and loss of genetic material.
References
Araujo, L., Bispo, W. S., Rios, V. S., Fernandes, S. A., & Rodrigues, F. A. (2015). Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Disease, 99(4), 447-459.
Bezerra, A. M., Nascimento Júnior, T., Leal, F. R., & Carneiro, J. G. M. (2006). Yielding of biomass, essential oil, contents phosphorus and potassium of Justicia pectoralis var. stenophylla in response to the fertilization organic and mineral. Revista Ciência Agronômica, 37(2), 124.
Cakmak, I., Welch, R. M., Erenoglu, B., Römheld, V., Norvell, W. A., & Kochian, L. V. (2000). Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant and Soil, 219(1-2), 279-284.
Chalker-Scott, L., Fnchigami, L,H. (1989). The role of phenolic compounds in plant stress responses. In: Paul, H. L., Ed. Low temperature stress physiology in crops. Boca Raton, Florida: CRC Press Inc. 1989:40.
Dixon, R. A., Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085-1097. DOI: 10.1105/tpc.7.7.1085.
EMBRAPA (2011) - Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de Solos. Rio de Janeiro, Embrapa Solos. 230 p.
Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e agrotecnologia, 38(2), 109-112.
Franklin, O., Cambui, C. A., Gruffman, L., Palmroth, S., Oren, R., & Näsholm, T. (2017). The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant, Cell & Environment, 40(1), 25-35.
Garlet, T. M. B., & Santos, O. S. D. (2008). Solução nutritiva e composição mineral de três espécies de menta cultivadas no sistema hidropônico. Ciência Rural, 38, 1233-1239. https://doi.org/10.1590/S0103-84782008000500005
Gobbo-Neto, L. & Lopes, N.P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374-381. http://dx.doi.org/10.1590/S0100-40422007000200026
Leal, L. K. A. M., Silva, A. H., & Barros, G. S. V. (2017). Justicia pectoralis, a coumarin medicinal plant have potential for the development of antiasthmatic drugs? Revista Brasileira de Farmacognosia, 27(6), 794-802.
Lima, P. Z. D. (2018). Cultivo e teor de cumarinas em Justicia pectoralis Jacq. var. stenophylla Leonar. Botucatu. Dissertação de Mestrado - Universidade Estadual Paulista.
Lopes, V., Bertolucci, S. K. V., de Carvalho, A. A., Roza, H. L. H., Figueiredo, F. C., & Pinto, J. E. B. P. (2019). Improvement of Cymbopogon flexuosus Biomass and Essential Oil Production With Organic Manures. Journal of Agricultural Science, 11(2).
Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223-232.
Oliveira, A. F. M., & Andrade, L. D. H. C. (2000). Caracterização morfológica de Justicia pectoralis Jacq. e J. gendarussa Burm. f. (Acanthaceae). Acta Amazonica, 30(4), 569-569.
Ramos, D. D., Vieira, M. D. C., Formagio, A. S. N., Cardoso, C. A. L., Ramos, D. D., & Carnevali, T. D. O. (2011). Atividade antioxidante de Hibiscus sabdariffa L. em função do espaçamento entre plantas e da adubação orgânica. Ciência rural, 41(8), 1331-1336.
Rosal, L. F., Pinto, J. E. B. P., Bertolucci, S. K. V., Brant, R. da S., Niculau, E. dos S., & Alves, P. B. (2011). Produção vegetal e de óleo essencial de boldo pequeno em função de fontes de adubos orgânicos. Revista Ceres, 58(5), 670-678. https://doi.org/10.1590/S0034-737X2011000500020
Teixeira, W. G., de Sousa, R. T. X., & Korndörfer, G. H. (2014). Resposta da cana-de-açúcar a doses de fósforo fornecidas por fertilizante organomineral. Bioscience Journal, 30(6).
Vieira, R. M., Vieira, A. S., Rezende, C. F. A., & Peixoto, J. C. (2019). Crescimento, acúmulo de nutriente e prospecção fitoquímica da Justicia pectoralis Jacq. em função do tipo de adubação. Revista Brasileira De Agropecuária Sustentável, 9(04), 27-33.
Vries, J. X., Tauscher, B., & Wurzel, G. (1988). Constituents of Justicia pectoralis Jacq. 2. gas chromatography/mass spectrometry of simple coumarins, 3‐phenylpropionic acids and their hydroxy and methoxy derivatives. Biomedical & environmental mass spectrometry, 15(8), 413-417.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cláudia Fabiana Alves Rezende, Gabriella Alexandre Dutra, Rafaela Miguel Vieira, Josana de Castro Peixoto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.