In silico" analysis of hydroxychloroquine and compounds obtained through its molecular modification

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7359

Keywords:

Pharmacokinetics; Pharmacodynamics; Hydroxychloroquine; Toxicology.

Abstract

The present work aims to evaluate "in silico" hydroxychloroquine and its analogs obtained and make a comparative study between them, taking into account the pharmacokinetic, pharmacodynamic and toxicological parameters. In the pharmacokinetic and toxicological analysis, the online server PreADMET was used to make predictions based on the structure of the molecule and in the pharmacodynamic analysis, another online server was used, the Swiss TargetPrediction where the targets that the molecules were linked to and the probability of binding were observed. According to the predictions that were made, we can see that the two analogs were slightly better than hydroxychloroquine. Regarding pharmacokinetics, the analogue JW 01 showed an absorption rate (Caco2) better than the prototype and no inhibition of cytochrome P450 enzymes. In pharmacodynamics, the two analogs presented a better profile than the prototype, with JW 01 presenting lower link probabilities with some receptors and JW 02 did not bind to any of them. In toxicology the molecules showed mutagenicity and no carcinogenicity, in the risk of inhibition of the hERG gene they presented medium risk, and the analogue JW 02 was less toxic than the other molecules in the tests with marine animals.

References

Akinaga, J., Lima, V., Kiguti, L. R., Hebeler-Barbosa, F., Alcántara-Hernández, R., García-Sáinz, J. A., & Pupo, A. S. (2013). Differential phosphorylation, desensitization, and internalization of α1A-adrenoceptors activated by norepinephrine and oxymetazoline. Molecular Pharmacology, 83(4), 870–881.

Alliance, D., Santos, C. B. R. D., Barbosa, L. M. C., Gomes, J. S., Lobato, C. C., Viana, J. C., & Souto, R. N. P. (2017). Chemical Study, Predictions In Silico and Larvicide Activity of the Essential Oil of Root Philodendron deflexum Poepp. Journal of Computational and Theoretical Nanoscience, 14(7), 3330-3337

Arwa B. R., Vladimir, B. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7, 147-172

Bjerregaard, P. (2018). The diagnosis and management of short QT syndrome. Heart Rhythm. 15(8), 1261–1267.

Brioni, J. D., Esbenshade, T. A., Garrison, T. R., Bitner, S. R., & Cowart, M. D. (2011). Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer's disease. The Journal of Pharmacology and Experimental Therapeutics, 336(1), 38–46.

Burgess, A., & Hynynen, K. (2013). Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS chemical neuroscience, 4(4), 519–526.

Cespedes, M. da S., Souza, J. C. R. P. de. (2020). Coronavirus: a clinical update of Covid-19 Revista da Associação Médica Brasileira, 66(2), 116-123.

Clark, m.a. et al. (ED). Pharmacology. 5th ed. Baltimore: Walters Kluwer, 2012, (Lippincott´s illustrated reviews).

Claxton, L. D., Umbuzeiro, G., & DeMarini, D. M. (2010). The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environmental Health Perspectives, 118(11), 1515–1522.

Criado, P R., Criado, R. F. J., Maruta, C. W., Machado Filho, C. d´A. (2010). Histamina, receptores de histamina e anti-histamínicos: novos conceitos. Anais Brasileiros de Dermatologia, 85(2), 195-210.

Colson, P., Rolain, J. M., Lagier, J. C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932

Danza, A., Graña, D., Goñi, M., Vargas, A., Ruiz-Irastorza, G. (2016). Hidroxicloroquina en el tratamento de las enfermedades autoinmunes sistémicas. Revista Médica de Chile, 144, 232-240.

Devaux, C. A., Rolain, J. M., Colson, P., Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 1-6.

Dolabela, M. F., Silva, A. R. P. D., Ohashi, L. H., Bastos, M. L. C., Silva, M. C. M. D., & Vale, V. V. (2018). Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Revista Fitos, 12(3), 227-242.

Fantini, J., Di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents. 1-8

Ferrari, F. (2020). COVID-19: Dados Atualizados e sua Relação Com o Sistema Cardiovascular. Arquivos Brasileiros de Cardiologia, Epub May 11, 2020. https://doi.org/10.36660/abc.20200215

Gameiro Filho, A. R., Souza, R. de M., Santos F. M. dos., Cardoso, R. de C. M., Mello, P. C. de., Alves Junior, A. de A. (2018). Retinal toxicity due to hydroxychloroquine: frequency in an Ophthalmology ambulatory. Revista Brasileira Oftalmologia, 77 (5), 261-263.

Halligudi, N., Mullaicharam, A.R., Al-Bahri, H. (2017). Molecular modification of ibuprofen using in silico modeling system. International Journal of Nutrition, Pharmacology, Neurological Diseases, 2(2), 156-162.

Lacava, A. C. (2010). Complicações oculares da terapêutica com a cloroquina e derivados. Arquivos Brasileiros de Oftalmologia, 73(4), 384-389.

Maior, A.S., Barbosa, P. R. B., Barbosa Neto, O., Mota, G. R. da., Marocolo Júnior, M. (2011). Canais Iônicos de Potássio Associados à Síndrome do QT Longo Adquirido. Revista Brasileira de Cardiologia, 24(1), 42-51.

Martins, L. R., Coelho, F. C., Gomes, M. F. da C., Cruz, O. G., Bastos, L. S., Villela, D. A. M., Codeço, C. T. (2020). Emergência do novo coronavírus (SARS-CoV-2) e o papel de uma vigilância nacional em saúde oportuna e efetiva. Cadernos de Saúde Pública, 36(3), 1-5.

Mikovski, D., Basso, J., Silva, P. da., Ribas, J. L. C. (2018). Química Medicinal E A Sua Importância No Desenvolvimento De Novos Fármacos. Revista Saúde e Desenvolvimento, 12(13), 30-43.

Santos, C. (2008) Ciclização intramolecular: uma estratégia promissora no desenvolvimento de pró-fármacos. Revista Brasileira de Ciências Farmacêuticas, 44(3), 349-360.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Santos, R. da C. dos., Daniel, I. C., Próspero, D. F. A., Costa, C. L. S. da. (2018). Modificação molecular incremental: análise de parâmetros físico-químicos, farmacocinéticos e toxicológicos in silico de fármacos inibidores seletivos da recaptação de serotonina (ISRSs). Boletim Informativo Geum, 9(2), 31-38.

Semeniuk, A. et al. Molecular geometry of antimalarial amodiaquine in different

crystalline environments. Journal of Molecular Structure, v. 875, n. 1–3, p. 32–41, 2008.

Stoll, F; Göller, . H; Hillisch, A. Utility of structures in overcoming ADME- related issues of drug-like compounds. Drug Discovery Today, v. 16, n. 11-12, p. 530-538, 2011.

Ventura, A. L. M., Abreu, P. A., Freitas, R. C. C., Sathler, P. C., Loureiro, N., Castro, H. C. (2010). Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Revista de Psiquiatria Clínica, 37(2), 66-72.

Vieira, G. de. D., Sousa, C. M. de. (2013) Aspectos celulares e fisiológicos da Barreira Hematoencefálica e a sua relação com as doenças neurodegenerativas. Journal of Health & Biological Sciences, 1(4), 166-170.

Wang W, MacKinnon R (2017). "Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG". Cell. 169 (3): 422–430.

Yakaiah C., Sneha T., Shalini T., Srinivas C., Anand K. D., Niranjana K. A., Srinivas K.V.N.S., Sarfaraz A., Kotesh K. J., Feroz K., Ashok T., P. G. (2015). Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity, European Journal of Medicinal Chemistry, 93, 564-573,

Published

26/08/2020

How to Cite

RIBEIRO, J. M.; SOUSA, W. F. C.; SOUSA, J. . A. In silico" analysis of hydroxychloroquine and compounds obtained through its molecular modification. Research, Society and Development, [S. l.], v. 9, n. 9, p. e477997359, 2020. DOI: 10.33448/rsd-v9i9.7359. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7359. Acesso em: 23 apr. 2024.

Issue

Section

Health Sciences