Immunological response against SARS-CoV-2: a review between the host and virus response

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8132

Keywords:

Coronavirus infections; Inflammation; Severe acute respiratory syndrome; Cytokines.

Abstract

The host's effective immune response against SARS-Cov-2, including innate and adaptive immunity, appears crucial to controlling and fighting viral infection. However, unregulated immune responses can result in immunopathology and altered pulmonary gas exchange, leading to acute respiratory distress syndrome. Unfortunately, the pathophysiology and treatment, especially for severe COVID-19, are still unclear. Thus, the aim of this review was to demonstrate a brief overview of the innate and adaptive immune response developed by the human body in cases of SARS-Cov-2 infection. To this end, a systematic review of a qualitative character was carried out, in which scientific articles indexed in the Pubmed/Medline databases were used, as well as official documents produced by the World Health Organization and the Ministry of Health - Brazil. The bibliographic search showed 2827 results in the Pubmed/Medline databases, of these 42 were used for the writing of this work. According to the literature consulted, it can be concluded that the stimulation of an immune response in cases of SARS-Cov-2 is essential for the control and elimination of the virus, including components of the innate and adaptive immune response. However, it can be observed that many times the infection by SARS-Cov-2 produces an exacerbated immune response, with the excessive production of inflammatory mediators, which from the clinical point of view contributes to the therapeutic failure and evolution of the disease.

References

Ababneh, M., Alrwashdeh, M., & Khalifeh, M. (2019). Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet World, 12(10), 1554-1562. https://doi.org/10.14202/vetworld.2019.1554-1562

Ali, M. T., Morshed, M. M., Gazi, M. A., Musa, M. A., Kibria, M. G., Uddin, M. J., Khan, M. A., & Hasan, S. (2014). Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV. Bioinformation, 10(8), 533-538. https://doi.org/10.6026/97320630010533

Atianand, M. K., & Fitzgerald, K. A. (2013). Molecular basis of DNA recognition in the immune system. J Immunol, 190(5), 1911-1918. https://doi.org/10.4049/jimmunol.1203162

Baker, S., Kessler, E., Darville-Bowleg, L., & Merchant, M. (2019). Different mechanisms of serum complement activation in the plasma of common (Chelydra serpentina) and alligator (Macrochelys temminckii) snapping turtles. PLoS One, 14(6), e0217626. https://doi.org/10.1371/journal.pone.0217626

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Møller, R., Panis, M., Sachs, D., Albrecht, R. A., & tenOever, B. R. (2020). SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. BioRxiv.

Brasil, M. S.-. (2019). Painel de casos de doença pelo coronavírus 2019 (COVID-19) no Brasil pelo Ministério da Saúde. Brasil.

Bunte, K., & Beikler, T. (2019). Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int J Mol Sci, 20(14). https://doi.org/10.3390/ijms20143394

Cecere, T. E., Todd, S. M., & Leroith, T. (2012). Regulatory T cells in arterivirus and coronavirus infections: do they protect against disease or enhance it? Viruses, 4(5), 833-846. https://doi.org/10.3390/v4050833

Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K., & Perlman, S. (2014). Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol, 88(19), 11034-11044. https://doi.org/10.1128/JVI.01505-14

Chen, J., Lau, Y. F., Lamirande, E. W., Paddock, C. D., Bartlett, J. H., Zaki, S. R., & Subbarao, K. (2020). Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol, 84(3), 1289-1301. https://doi.org/10.1128/JVI.01281-09

Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schunemann, H. J., & authors, C.-S. U. R. G. E. s. (2020). Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet, 395(10242), 1973-1987. https://doi.org/10.1016/S0140-6736(20)31142-9

Conti, P., Gallenga, C. E., Tete, G., Caraffa, A., Ronconi, G., Younes, A., Toniato, E., Ross, R., & Kritas, S. K. (2020). How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. J Biol Regul Homeost Agents, 34(2), 333-338. https://doi.org/10.23812/Editorial-Conti-2

Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 1282, 1-23. https://doi.org/10.1007/978-1-4939-2438-7_1

Fiocruz. (2020). InfoGripe. Situação da gripe. http://info.gripe.fiocruz.br/

Gong, J., Dong, H., Xia, S. Q., Huang, Y. Z., Wang, D., Zhao, Y., Liu, W., Tu, S., Zhang, M., Wang, Q., & Lu, F. (2020). Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. MedRxiv.

Gralinski, L. E., Sheahan, T. P., Morrison, T. E., Menachery, V. D., Jensen, K., Leist, S. R., Whitmore, A., Heise, M. T., & Baric, R. S. (2018). Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio, 9(5). https://doi.org/10.1128/mBio.01753-18

Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0

Hayden, M. S., & Ghosh, S. (2014). Regulation of NF-kappaB by TNF family cytokines. Semin Immunol, 26(3), 253-266. https://doi.org/10.1016/j.smim.2014.05.004

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 11(5), 373-384. https://doi.org/10.1038/ni.1863

Liu, J., Liu, Y., Xiang, P., Pu, L., Xiong, H., Li, C., Zhang, M., Tan, J., Xu, Y., & Song, R. (2020). Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage. MedRxiv.

Maloir, Q., Ghysen, K., von Frenckell, C., Louis, R., & Guiot, J. (2018). [Acute respiratory distress revealing antisynthetase syndrome]. Rev Med Liege, 73(7-8), 370-375. http://www.ncbi.nlm.nih.gov/pubmed/30113776 (Detresse respiratoire aigue revelatrice d'un syndrome des antisynthetases.)

Manni, M. L., Robinson, K. M., & Alcorn, J. F. (2014). A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev Respir Med, 8(1), 25-42. https://doi.org/10.1586/17476348.2014.854167

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & Hlh Across Speciality Collaboration, U. K. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229), 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0

Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Wang, P., Wang, W., Wang, X., Zhou, J., Zhang, L., & Tan, W. (2018). Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient. J Infect Dis, 218(8), 1249-1260. https://doi.org/10.1093/infdis/jiy311

O'Brien, T. R., Thomas, D. L., Jackson, S. S., Prokunina-Olsson, L., Donnelly, R. P., & Hartmann, R. (2020). Weak Induction of Interferon Expression by Severe Acute Respiratory Syndrome Coronavirus 2 Supports Clinical Trials of Interferon-lambda to Treat Early Coronavirus Disease 2019. Clin Infect Dis, 71(6), 1410-1412. https://doi.org/10.1093/cid/ciaa453

Okba, N. M. A., Muller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman, V. M., Lamers, M. M., Sikkema, R. S., de Bruin, E., Chandler, F. D., Yazdanpanah, Y., Le Hingrat, Q., Descamps, D., Houhou-Fidouh, N., Reusken, C., Bosch, B. J., Drosten, C., Koopmans, M. P. G., & Haagmans, B. L. (2020). Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis, 26(7), 1478-1488. https://doi.org/10.3201/eid2607.200841

Pascal, K. E., Coleman, C. M., Mujica, A. O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Strein, J., Berrebi, A., Sisk, J. M., Matthews, K. L., Babb, R., Chen, G., Lai, K. M., Huang, T. T., Olson, W., Yancopoulos, G. D., Stahl, N., Frieman, M. B., & Kyratsous, C. A. (2015). Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A, 112(28), 8738-8743. https://doi.org/10.1073/pnas.1510830112

Pichlmair, A., & Reis e Sousa, C. (2007). Innate recognition of viruses. Immunity, 27(3), 370-383. https://doi.org/10.1016/j.immuni.2007.08.012

Pobezinskaya, Y. L., Kim, Y. S., Choksi, S., Morgan, M. J., Li, T., Liu, C., & Liu, Z. (2008). The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol, 9(9), 1047-1054. https://doi.org/10.1038/ni.1639

Rodriguez-Morales, A. J., Cardona-Ospina, J. A., Gutierrez-Ocampo, E., Villamizar-Pena, R., Holguin-Rivera, Y., Escalera-Antezana, J. P., Alvarado-Arnez, L. E., Bonilla-Aldana, D. K., Franco-Paredes, C., Henao-Martinez, A. F., Paniz-Mondolfi, A., Lagos-Grisales, G. J., Ramirez-Vallejo, E., Suarez, J. A., Zambrano, L. I., Villamil-Gomez, W. E., Balbin-Ramon, G. J., Rabaan, A. A., Harapan, H., Dhama, K., Nishiura, H., Kataoka, H., Ahmad, T., Sah, R., & Latin American Network of Coronavirus Disease, C.-R. E. a. h. w. l. o. (2020). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis, 34, 101623. https://doi.org/10.1016/j.tmaid.2020.101623

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med, 46(5), 846-848. https://doi.org/10.1007/s00134-020-05991-x

SAPS, S. A. P. a. S., Saúde, M., & Brasil. (2019). 2019. Brasil, 33.

Satoh, T., & Akira, S. (2016). Toll-Like Receptor Signaling and Its Inducible Proteins. Microbiol Spectr, 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

Sun, S., Zhao, G., Liu, C., Wu, X., Guo, Y., Yu, H., Song, H., Du, L., Jiang, S., Guo, R., Tomlinson, S., & Zhou, Y. (2013). Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol, 49(2), 221-230. https://doi.org/10.1165/rcmb.2012-0428OC

WHO. (2020a). IHR procedures concerning public health emergencies of international concern (PHEIC). World Health Organization

WHO. (2020b). Prioritizing diseases for research and development in emergency contexts. World Health Organization

WHO. (2020c). Q&A on coronaviruses. World Health Organization.

WHO. (2020d). Severe acute respiratory syndrome (SARS). World Health Organization.

Wilk, A. J., Rustagi, A., Zhao, N.Q., Roque, J., Martínez-Colón, G. J., McKechnie, J. L., Ivison, G T., Ranganath, T., Vergara, R., Hollis, T., Simpson, L. J., Grant, P., Subramanian, A., Rogers, A. J., Blish, C. A. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 26, 1070–1076. https://doi.org/10.1038/s41591-020-0944-y

Xiong, Y., Liu, Y., Cao, L., Wang, D., Guo, M., Jiang, A., Guo, D., Hu, W., Yang, J., Tang, Z., Wu, H., Lin, Y., Zhang, M., Zhang, Q., Shi, M., Liu, Y., Zhou, Y., Lan, K., & Chen, Y. (2020). Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect, 9(1), 761-770. https://doi.org/10.1080/22221751.2020.1747363

Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S. S., Fett, C., Zhao, J., Gale, M. J., Jr., Baric, R. S., Enjuanes, L., Gallagher, T., McCray, P. B., Jr., & Perlman, S. (2014). Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A, 111(13), 4970-4975. https://doi.org/10.1073/pnas.1323279111

Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., Liu, B., Zhang, X., Wang, W., He, K., Jin, Q., Li, M., & Wang, J. (2020). Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe, 27(6), 883-890 e882. https://doi.org/10.1016/j.chom.2020.04.017

Published

17/09/2020

How to Cite

CARVALHO , D. C. S.; MORAES NETO, R. N. .; ALBUQUERQUE, R. P. de .; SOARES, E. F. A. .; CARVALHO, R. C. .; SOUSA, E. M. de. Immunological response against SARS-CoV-2: a review between the host and virus response. Research, Society and Development, [S. l.], v. 9, n. 10, p. e239108132, 2020. DOI: 10.33448/rsd-v9i10.8132. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8132. Acesso em: 5 jan. 2025.

Issue

Section

Review Article