Effect of Trinexapac-ethyl associated with nitrogen fertilization on upland rice nutritional status and grain yield

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9409

Keywords:

Oryza sativa L.; Nitrogen rates; Gibberellin; Growth regulator; Leaf diagnosis.

Abstract

Trinexapac-ethyl spraying time and proper nitrogen rate are essential to reduce plant height and lodging at harvest, without affecting rice yield and nutritional balance. This study aimed to evaluate trinexapac-ethyl spraying time and N contents as topdressing for upland rice paddies. The experiment was carried out in a randomized block design and a 4x5 factorial scheme, with four replications. Treatments consisted of four trinexapac-ethyl spraying times, in the phenological stages of tillering, floral differentiation, between tillering and floral differentiation, and a control (without spraying), and five nitrogen rates (0, 50, 100, 150, and 200, kg ha-1) as topdressing. As nitrogen topdressing rates increased, leaf contents of N, Fe++, and Zn++ increased, while S and Mn++ decreased; however, contents of P, Ca++, Mg++, B, and Cu++ were little influenced. When trinexapac-ethyl was applied, leaf contents of N, P, S, B, and Zn++ were little influenced, while P, Ca++, Mg++, Fe++, and Mn++ increased, and Cu++ decreased. Trinexapac-ethyl can be applied at tillering without decreasing rice yield. Upland rice increased grain yield by 58 and 46% in two consecutive crop years due to application of about 120 kg N ha-1 as topdressing.

References

Agren, G. I. (2004). The C:N:P Stoichiometry of autotrophs – theory and observations. Ecology Letters. 7(3): 185-191. https://doi.org/10.1111/j.1461-0248.2004.00567.x.

Alvarez, R. C. F., Crusciol, C. A. C., Nascente, A. S. (2014). Produtividade de arroz de terras altas em função de reguladores de crescimento. Revista Ceres. 61(1). https://doi.org/10.1590/S0034-737X2014000100006.

Alvarez, R. C. F., Crusciol, C. A. C., Nascente, A. S., Rodrigues, J. D., Habermann, G., Paiva Neto, V. B. (2016). Trinexapac-ethyl affects growth and gas exchange of upland rice. Revista Caatinga. 29(2): 320- 326. https://doi.org/10.1590/1983-21252016v29n208rc.

Alvarez, R. C. F., Crusciol, C. A. C., Nascente, A. S., Rodrigues, J. D., Habermann, G. (2012). Gas exchange rates, plant height, yield components, and productivity of upland rice as affected by plant regulators. Pesquisa Agropecuária Brasileira. 47(10). https://doi.org/10.1590/S0100-204X2012001000007.

Arf, O., Bastos, J. C. H. A. G., Silva, M. G., Sá, M. E., Rodrigues, R. A. F., Buzetti, S. (2005). Manejo do solo e época de aplicação de nitrogênio na produção de arroz de terras altas. Acta Scientiarum Agronomy. 27(2), 215-223. https://doi.org/10.4025/actasciagron.v27i2.1905.

Arf, O., Nascimento, V., Rodrigues, R. A. F., Alvarez, R. C. F., Guitti, D. C., Sá, M. E. (2012). Uso de Etil-Trinexapac em cultivares de arroz de terras altas. Pesquisa Agropecuária Tropical. 42(2), 150-158. https://doi.org/10.1590/S1983-40632012000200008.

Bataglia, O. C., Furlani, A. M. C., Teixeira, J. P. F., Furlani, P. R., Gallo, J. P. (1983). Métodos de análise química de plantas. Campinas: Instituto Agronômico. 48 p. (Boletin Técnico, 78).

Chandel, G., Benerjee, S., Ver, S., Meena, R., Sharma, D. J., Verulkar, S. B. (2010). Effects of Different Nitrogen Fertilizer Levels and Native Soil Properties on Rice Grain Fe++, Zn++ and Protein Contents. Rice Science. 17(3), 213-227. DOI: 10.1016/S1672-6308(09)60020-2.

Conab. (2020). Acompanhamento da safra brasileira de grãos 2019/2020: quarto levantamento – Janeiro/2020. Recuperado de <http://www.conab.gov.br>.

Corbin, J. L., Walker, T. W., Orlowski, J. M., Krutz, L. J., Gore, J., Cox, M. S., Golden, B. R. (2016). Evaluation of Trinexapac-Ethyl and Nitrogen Management to Minimize Lodging in Rice. Agronomy Journal. 108(6), 2365-2370. https://doi.org/10.2134/agronj2016.04.0185.

Ferrari, S., Pagliari, P., Trettel, J. (2018). Optimum sowing date and genotype testing for upland rice production in Brazil. Scientific Reports, 8(1), 1-8. https://doi.org/10.1038/s41598-018-26628-6.

Ferreira, D. F. (2019). Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria. 37, 529-535. https://doi.org/10.28951/rbb.v37i4.450.

Guo, Y., Zhu, C., Gan, L., N. G. D., Xia, K. (2015). Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice. Plos One. 10(2) https://doi.org/10.1371/journal.pone.0118177.

Hashem, I. M., Naeem, E. S., Metwally, T. F., EL Sharkawi, H. M. (2016). Enhancement of lodging resistance and productivity of rice using growth regulators at different nitrogen levels. Journal of Plant Breeding and Crop Science. 8(3), 34-44. DOI: 10.5897/JPBCS2015.0563.

Jamal, A., Moon, Y. S., Abdin, M. Z. (2010). Sulphur -a general overview and interaction with nitrogen. Australian Journal of Crop Science. 4(7), 523-529.

Liu, X., Wang, H., Zhou, J., Chen, Z., Lu, D., Zhu, D., Deng, P. (2017). Effect of nitrogen root zone fertilization on rice yield, uptake and utilization of macronutrient in lower reaches of Yangtze River, China. Paddy Water Environ. 15, 625-638. DOI: 10.1007/s10333-017-0581-3.

Marolli, A., Silva, J. A. G., Romitti, M. V., Mantai, R. D., Hawerroth, M. C., Scremin, O. B. (2017). Biomass and grain yield of oats by growth regulator. Revista Brasileira de Engenharia Agrícola e Ambiental. 21(3), 163-168. https://doi.org/10.1590/1807-1929/agriambi.v 21n3p163-168.

Nascimento, V., Arf, O., Silva, M. G., Binotti, F. F. S., Rodrigues, R. A. F., Alvarez, R. C. F. (2009). Uso do regulador de crescimento etil-trinexapac em arroz de terras altas. Bragantia. 68: 921-929.

Neto, A. R., Villela, O. V. Arroz. In: Aguiar, A. T. E., Gonçalves, C., Paterniani, M. E A. G. Z., Tucci, M. L. S, Castro, C. E. F de (eds). (2014). Instruções agrícolas para as principais culturas econômicas. Campinas: Instituto Agronômico. p. 39-40. (Boletim Técnico, 200).

Pan, S., Liu, H., Mo, Z., Patterson, B., Duan, M., Tian, H., Hu, S., Tang, X. (2016). Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes. Scientific Reports. 6. DOI: 10.1038/srep32148.

Peron, I. B. G., Portugal, J. R., Arf, O., Rodrigues, R. A. F., Gitti, D. C. (2019). Nitrogen supply associated with the application of trinexapac-ethyl in upland rice irrigated by sprinkler. Semina: Ciências Agrárias. 40(5), 2137-2150. DOI: 10.5433/1679-0359.2019v40n5Supl1p2137.

Raij, V. B. (2011). Fertilidade do solo e manejo de nutrientes. Piracicaba: International Plant Nutrition Institute. 420p.

Regitano Neto, A., Gallo, P. B., Ramos Junior, E. U., Kiihl, T. A. M., Azzini, L. E. (2013). IAC 203 and IAC 204: new upland rice varieties for the State of São Paulo. Crop Breeding and Applied Biotechnology. 13, 367-370. https://doi.org/10.1590/S1984-70332013000400008.

Reis, H. P. G., Barcelos, J. P. Q., Furlani Junior, E., Santos, E. F., Silva, V. M., Moraes, M. F., Putti, F. F., Reis, A. R. (2018). Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science. 79, 508- 515.

Santos, H. G., Jocomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbrearas, J. F., Coelho, M. R., Almeida, J. Á., Cunha, T. J. F., Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos. (3a ed.), Rio de Janeiro: Embrapa. p. 353.

Silva, O. F., Wander, A. E., Ferreira. C. M. (2019). Importância econômica e social. AGEITEC, Agência Embrapa de Informação e tecnologia. 2019. Recuperado de https://www.agencia.cnptia.embrapa.br/gestor/arroz/arvore/CONT000fe7457q102wx5eo07qw4xeynhsp7i.html>.

Song, Q., Zhang, G., Zhu, X. G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology. 40, 109-124. DOI: 10.1071/FP12056.

United States Department of Agriculture - Usda (1999). Soil taxonomy: a basic syste of soil classification for making and interpreting soil surveys. Washington. p. 871.

White, P. J. (2016). Selenium accumulation by plants. Annals of Botany. 117(2), 217-235. https://doi.org/10.1093/aob/mcv180.

Yan, Z., Kim, N., Han, T., Du, E., Fang, J. (2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil. 388: 147-155. DOI: 10.1007/s11104-014-2316-1.

Zhang, W., Wu, L., Wu, X., Ding, Y., Li, G., Li, J., Weng, F., Lui, Z., Tang, S., Ding, C., Wang, S. (2016). Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Springer Open. 9(3). https://doi.org/10.1186/s12284-016-0103-8.

Downloads

Published

29/11/2020

How to Cite

FERRARI, S. .; CORDEIRO, L. F. dos S. .; CARARA, L. G. D. .; NASCIMENTO, V. do .; LOPES, P. R. M. .; PRADO, E. P. .; VIANA, R. da S. . Effect of Trinexapac-ethyl associated with nitrogen fertilization on upland rice nutritional status and grain yield. Research, Society and Development, [S. l.], v. 9, n. 11, p. e6779119409, 2020. DOI: 10.33448/rsd-v9i11.9409. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9409. Acesso em: 6 jan. 2025.

Issue

Section

Agrarian and Biological Sciences