Water reuse at the pulp and paper industry using water source diagram
DOI:
https://doi.org/10.33448/rsd-v9i11.9444Keywords:
Water; Reuse; Operation; WSD; Paper.Abstract
One of the main issues in the present and upcoming decades is the improvement of natural resource use efficiencies. The industrial use of water is preferred as a target for the implementation of sustainable models of water management with the purpose of reducing the use of this resource and generates less waste. This study aims the application of the Water Source Diagram (WSD) method in paper industry, typology associated to high wastewater generation, as a potential strategy to achieve sustainable industrial processes through wastewater reuse. Operational data from paper industry were provided by previous works. Two scenarios of freshwater consumption were generated to model the system. Both cases showed that the freshwater consumption may be reduced over 30.22%, in relation to the baseline of no reuse. The efficiency of the WSD was also compared to other results reported in the literature. Although economic evaluation has not been addressed in this work, the method could be considered as a strategic tool for decision making.
References
Alexandersson, T. (2003). Water reuse in paper mills: measurement and control problems in biological treatment (Licentiate Thesis). Lund University, Lund, Sweden. Retrieved from https://portal.research.lu.se/portal/en/publications/water-reuse-in-paper-mills--measurements-and-control-problems-in-biological-treatment(95ff1208-61a4-4ce7-8526-aa745ab2d209).html
Calixto, E. E. S., Quaresma, A. C. L., Queiroz, E. M., & Pessoa, F. L. P. (2015). Water sources diagram in multiple contaminant industrial case studies: Adoption of a decomposition approach. Industrial and Engineering Chemical Research, 54 (41), 10040-10053. doi:10.1021/acs.iecr.5b01749
Calixto, E. E. S., Pessoa, F. L. P., Mirre, R. C., Francisco, F. S., & Queiroz, E. M. (2020). Water sources diagram and its applications. Processes, 8 (313), 1-10. doi:10.3390/pr8030313www.mdpi.com/journal/processes
Castro, P., Matos, H., Fernandes, M. C., & Nunes, C. P. (1999). Improvements for mass-exchange networks design. Chemical Engineering Science, 54, 1649-1665. doi:10.1016/S0009-2509(98)00526-0
Francisco, F. S., Bagajewicz, M. J., Pessoa, F. L. P., & Queiroz, E. M. (2015). Extension of the water sources diagram method to systems with simultaneous fixed flowrate and fixed load processes. Chemical Engineering Research and Design, 104, 752-772. doi:10.1016/j.cherd.2015.10.024
Gomes, J. F. S., Mirre, R. C., Delgado, B. E. P. C., Queiroz, E. M., & Pessoa, F. L. P. (2013). Water sources diagram in multiple contaminant processes: Maximum reuse. Industrial and Engineering Chemical Research, 52 (4), 1667-1677. doi:10.1021/ie301537c
Gomes, J. F. S., Queiroz, E. M., & Pessoa, F. L. P. (2007). Design procedure for water/wastewater minimization: Single contaminant. Journal of Cleaner Production, 15, 474-485. doi:10.1016/j.jclepro.2005.11.018
Gómes, J., Savelski, M. J., & Bagajewicz, M. J. (2001). On a systematic design procedure for water utilization systems in refineries and process plant. Chemical Engineering Communications, 186, 183-203. doi:10.1080/00986440108912873
Guelli Ulson de Souza, S. M. A., Xavier, M. F. S., & Ulson de Souza, A. A. (2011). Water reuse and wastewater minimization in chemical industries using differentiated regeneration of contaminants. Industrial and Engineering Chemical Research, 50, 7428-7436. doi:10.1021/ie200305z
Hamaguchi, M. (2008). Análise do circuito de água em processo de fabricação de papel imprensa integrada com produção de pastas termomecânicas (Dissertação de mestrado). Universidade de São Paulo, São Paulo, Brasil. Retrieved from https://teses.usp.br/teses/disponiveis/3/3137/tde-09012008-175600/pt-br.php
Indústria Brasileira de Árvores. (2019). Relatório Ibá 2019. Retrieved from https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf
Immich, A. P. S., Gusatti, M., Mello, J. M. M., Guelli U. Souza, S. M. A. & Pessoa, F. L. P. (2007). Application of the water source diagram (WSD) procedure to water use minimization in a batch process. In European Congress of Chemical Engineering, Proceedings Copenhagen: EFCE, Copenhagen: Immich, A. P. S., Gusatti, M., Mello, J. M. M., Guelli U. Souza, S. M. A., Pessoa, F.L.P.
Khodaparas, Z., & Kamali, M. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005
Koppol, A. P. R., Bagajewicz, M., & Dericks, B. (2003). On zero water discharge solutions in the process industry. Advances in Environmental Research, 8, 151-171. doi:10.1016/S1093-0191(02)00130-2
Mancuso, P. C. S, & Santos, M. F. (2003). Reuso de água (1st ed). São Paulo: Manole.
Marques, S. V. (2008). Minimização do consumo de água e da geração de efluentes aquosos: Estudos de casos (Dissertação de mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
Mierzwa, J. C., & Hespanhol, I. (2005). Água na indústria: Uso racional e reuso. São Paulo: Oficina dos textos.
Mirre, R. C. (2012). Metodologia para o gerenciamento sustentável do reuso de águas e efluentes industriais por meio da integração de processos (Tese de doutorado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. Retrieved from http://186.202.79.107/download/gerenciamento-sustentavel-do-reuso-de-aguas.pdf
Monte, M. C., Fuente, E., Blanco, A., & Negro, C. (2009). Waste management from pulp and paper production in the european union. Waste Management, 29, 293-308. doi:10.1016/j.wasman.2008.02.002
Moreira, R. C. (2009). Minimização de efluentes em uma unidade de tratamento de água industrial (Dissertação de mestrado). Universidade Federal da Bahia, Salvador, BA, Brasil.
Peixoto, T. C. L. C. (2011). Reuso de água: comparação entre os métodos DFA, programação linear e programação não linear (Dissertação de mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. Retrieved from http://tpqb.eq.ufrj.br/download/reuso-de-agua-dfa-programacao-linear-e-nao-linear.pdf
Pereira, A. S., Shitsuka, D. M., Parreira; F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater: A review. Science of the total environment, 333, 37-58. doi:10.1016/j.scitotenv.2004.05.017
Simão, L., Hotza, D., Raupp-Pereira, F., Labrincha, J. A., & Montedo, O. R. K. (2018). Wastes from pulp and paper mills: A review of generation and recycling alternatives. Cerâmica, 64 (371), 443-453. doi:10.1590/0366-69132018643712414
Swedish Forest Industries Federation. (2019). Statistics. Retrieved from https://www.forestindustries.se/forest-industry/statistics/
Ulson de Souza, A. A., Forgiarini, E., Brandão, H. L., Xavier, M. F., Pessoa, F. L. P., & Guelli Ulson de Souza, S. M. A. (2009). Application of water source diagram (wsd) method for the reduction of water in petroleum refineries. Resources, Conservation and Recycling, 53, 149-154. doi:10.1016/j.resconrec.2008.11.002
Urbaniec, K., Mikulčić, H., Duić, N., & Lozano, R. (2016). SDEWES 2014 - Sustainable development of energy, water and environment systems. Journal of Cleaner Production, 130, 1-11. doi:10.1016/j.rser.2017.10.057
United Nations Development Programme. (2020). Sustainable development goals. Retrieved from https://www.undp.org/content/undp/en/home/sustainable-development-goals.html.
Wang, Y. P., & Smith, R. (1994). Wastewater minimization. Chemical Engineering Science, 49 (7), 981-1006. doi:10.1016/0009-2509(94)80006-5
Yang, Y. H., Lou, H. H., & Huang, Y. L. (2000). Synthesis of an optimal wastewater reuse network. Waste Management, 20, 311-319. doi:10.1016/S0956-053X(99)00298-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Marianna Oliveira Moura; José Jailton Marques; Inaura Carolina Carneiro da Rocha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.