La aplicación, las inversiones requeridas y los costos operativos del secuestro geológico de CO2: un estudio de caso

Autores/as

  • Pedro Junior Zucatelli Federal University of Espirito Santo
  • Ana Paula Meneguelo Universidade Federal do Espirito Santo
  • Gisele de Lorena Diniz Chaves Federal University of Espirito Santo
  • Gisele de Lorena Diniz Chaves Federal University of Espirito Santo
  • Marielce de Cassia Ribeiro Tosta Federal University of Espirito Santo

DOI:

https://doi.org/10.33448/rsd-v8i6.1023

Palabras clave:

Medio Ambiente; Carbón; Almacenamiento Geológico; Acuíferos; Sostenibilidad.

Resumen

La integridad de los sistemas naturales ya está en riesgo debido al cambio climático causado por las intensas emisiones de gases de efecto invernadero en la atmósfera. El objetivo del secuestro de carbono geológico es capturar, transportar y almacenar CO2 en formaciones geológicas apropiadas. En esta revisión, abordamos los entornos geológicos propicios para la aplicación de proyectos CCS (Captura y almacenamiento de carbono), las fases que conforman estos proyectos y sus costos asociados de inversión y operación. Además, se presentan los cálculos de la rentabilidad financiera estimada de diferentes tipos de proyectos en Brasil. Usando modelos matemáticos, se puede concluir que el campo Roncador presenta mayores ingresos brutos cuando la cantidad de petróleo extra que se puede recuperar es de 9.3% (US$ 48.55 billones aproximadamente en 2018). Cálculos adicionales muestran que el acuífero salino de Paraná tiene el ingreso bruto más alto (US$ 6.90 trillones en 2018) en comparación con los Solimões (US$ 3.76 trillones aproximadamente en 2018) y los acuíferos salinos de Santos (US$ 2.21 trillones aproximadamente en 2018) si El proyecto CCS debía ser empleado. Por lo tanto, el método de captura y almacenamiento de carbono propuesto en este estudio es una contribución científica importante para el almacenamiento confiable de CO2 a gran escala en Brasil.

Citas

Araújo, O.Q.F and Medeiros, J.L. (2017). Carbon capture and storage technologies: present scenario and drivers of innovation. Current Opinion in Chemical Engineering. Volume 17, August 2017, Pages 22-34.

Avila, P.R.T. (2013). Os impactos financeiros da comercialização dos créditos de carbono em uma empresa florestal brasileira. RBC: Revista Brasileira de Contabilidade, 201, 1, p. 19-31.

Barton, J.R.; Issaias, I. and Stentiford, E.I. (2008). Carbon–Making the right choice for waste management in developing countries. Waste management, 28, 4, 690-698.

Benson, S. M. Overview of Geologic Storage of CO2. (2005). In: Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project: Geologic Storage of Carbon Dioxide with Monitoring and Verification. Elsevier, 2005, v. 2, p. 665-672.

Boosari, S.S.H., Aybar, U. and Eshkalak, M.O. (2015). Carbon Dioxide Storage and Sequestration in Unconventional Shale Reservoirs. Journal of Geoscience and Environment Protection, 3, 7-15.

Brazil, 2009. Law nº. 12,187, of 29th december (2009). Institutes the National Policy on Climate Change- PNMC and makes other provisions. The Official Gazette, Brasília, Brazil. Available online at: <http://www.preventionweb.net/files/12488_BrazilNationalpolicyEN.pdf> (Accessed April, 2017).

Câmara, G.A.B. (2012). Fatores condicionantes para o uso em larga escala das tecnologias de captura e armazenamento geológico de dióxido de carbono no Brasil e sua aplicação no Estado da Bahia. PhD Thesis. Universidade Federal da Bahia – UFBA/Escola Politécnica. Salvador.

Chan, W. N. et al . (2016). Assessment Of CO2 Emission Mitigation For A Brazilian Oil Refinery. Braz. J. Chem. Eng., São Paulo, v.33, n.4, p.835-850, Dec. 2016. Available from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322016000400835&lng=en&nrm=iso>. (Accessed on 29 Apr. 2017).

CMMAD. (1991). Comissão Mundial sobre Meio Ambiente e Desenvolvimento. Nosso Futuro Comum. p. 46, 2ª ed. Rio de Janeiro: Editora da Fundação Getúlio Vargas.

Cook, P. (2006). Carbon dioxide capture and geological storage: research, development and application in Australia. International Journal of Environmental Studies, 63, p 6.

Costa, I.V.L. (2009). Análise do Potencial Técnico do Sequestro Geológico de CO2 no Setor petróleo no Brasil. In: Marco Aurélio Ziliotto. (Org.). Mudanças Climáticas, Sequestro e Mercado de Carbono. AM Impresos: Curitiba.

Da Motta, R.S.; Hargrave, J.; Luedemann, G. and Gutierrez, M.B.S. (2011). Climate change in Brazil: economic, social and regulatory aspects. IPEA. 358 p.

Dahowski, R. T.; Li, X.; Davidson, C. L.; Wei, N. and Dooley, J. J. (2009). Regional Opportunities for Carbon Dioxide Capture and Storage in China. A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China. Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Pacific North West National Laboratory Richland, Washington 99352.

De Coninck, H. (2008). Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM. Energy Policy, 36, 3, 929-936.

Dechezleprêtre, A.; Glachant, M. and Ménière, Y. (2009). Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico. Energy policy, 37,2, 703-711.

Delgado, M. F.; Altheman, E. (2007). Estudo sobre a Viabilidade Financeira do Mercado de Carbono. Unopar Cient., Ciênc. Juríd. Empres., Londrina, v. 8, p. 39-48, Available at: <http://www.pgsskroton.com.br/seer/index.php/juridicas/article/viewFile/1041/1000 (Accessed July, 2016)>.

Dos Reis Junior, J.A.; de Souza Ribeiro, M.; Jabbour, C.J.C. and van Bellen, H.M. (2015). Analysis of CDM projects potential benefits. Revista Brasileira de Gestão de Negócios, 17, 56, 1149.

Elias, R.S.; Wahab, M.I.M. and Fang, L. (2018). Retrofitting carbon capture and storage to natural gas-fired power plants: A real-options approach. Journal of Cleaner Production. Volume 192, August 2018, Pages 722-734.

Farla, J.C.M.; Hendriks, C.A. and Blok, K. (1995). Carbon Dioxide Recovery From Industrial Processes. Climate Change. Department of Science, Technology and Society, Utrecht University, The Netherlands, p. 439-61.

Formigli Filho, J.M.; Pinto, A.C.C. and Almeida, A.S. (2009). SS: Santos Basin’s Pre-Salt Reservoirs Development: The Way Ahead. Offshore Technology Conference.

Freund, P. and Davison, J. (2002). General Overview Of Costs, Proceedings Of The IPCC Workshop On Carbon Dioxide Capture And Storage. Intergovernmental Panel on Climate Change’s article. Regina, Canada.

Frondizi, I. M. R. L. O. (2009). Mecanismo de Desenvolvimento Limpo: Guia de Orientação. Documento Guia de Orientação do MDL 2009. Rio de Janeiro: Imperial Novo Milênio: FINDES.

Globa CCS Institute. (2017). Projects. Available at: <https://www.globalccsinstitute.com/projects/sleipner%C2%A0co2-storage-project>. (Accessed March, 2017).

Golub, A.; Hertel, T.; Lee, H. L.; Rose, S. and Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31, 4, 299-319.

Greenpeace. (2013). Organização Global. As lições da Política Nacional de Mudança do Clima. Available at: <http://www.greenpeace.org/brasil/Global/brasil/image/2013/Novembro/relatorio%20pnmc%20final.pdf>. (Accessed April, 2017).

Heddle, G.; Herzog, H. and Klett, M. (2003). The Economics of CO2 Storage. MIT LFEE 003 RP, Massachusetts Institute of Technology, Laboratory for Energy and the Environment. Massachusetts, USA.

Hendriks, C.; Graus, W. and Van Bergen, F. (2004). Global Carbon Dioxide Storage Potential And Costs. ECOFYS, Report nº EEP – 02001.

Hopwood, B.; Mellor, M.; and O'Brien, G. (2005). Sustainable development: mapping different approaches. Sustainable Development, 13,1, 38-52.

Investing. (2018a). Commodities, dados históricos dos valores do barril de Petróleo Brent. Available online at: <http://br.investing.com/commodities/brent-oil>. (Accessed August, 2018).

Investing. (2018b). Commodities, dados históricos dos valores do crédito de carbono. Available online at: <http://br.investing.com/commodities/carbon-emissions-historical-data>. (Accessed August, 2018).

IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, USA, 442 pp.

Jannuzzi, G.M. and Poppe, M.K. (2011). Development, cooperation and transfer of low carbon energy technologies. In: Da Motta, R. S., Hargrave, J., Luedemann, G., & Gutierrez, M. B. S. (eds). Climate change in Brazil: economic, social and regulatory aspects. Brasília: IPEA. p. 157.

Kates, R.W.; Parris, T.M. and Leiserowitz, A.A. (2005). What is sustainable development? Environment, 47, 3, 8.

Ketzer, J.M. (2008). Entrevista. Revista Mensal do Conselho Regional de Engenharia Arquitetura e Agronomia do Rio Grande do Sul. Ano IV, 42, p. 06-07.

Ketzer, J.M.M.; Carpentier, B.; Le Gallo, Y. and Le Thiez, P. (2005). Geological Sequestration of CO2 in Mature Hydrocarbon Fields. Basin and Reservoir Numerical Modelling of the Forties Field. North Sea. Institut Français du Pétrole. Oil & Gas Science and Technology Rev. IFP, 60, 2, 259-273.

Khalili, A.El. (2003). O que são Créditos de Carbono? Revista Eco 21, XII, 74, p. 01.

Kim, J.W. and Choi, J.H. (2014). Estimation of carbon capture and storage transport cost in Korea. Geosystem Engineering, 17, 1.

Li, X.; Wei, N.; Liu, Y.; Fang, Z.; Dahowski, R. T. and Davidson, C.L. (2009). CO2 point emission and geological storage capacity in China. Energy Procedia, 1, 1, 2793-2800.

Lino, U.R.A. (2005). Case History of Breaking a Paradigm: Improvement of an Immiscible Gas - Injection Project in Buracica Field by Water Injection at the Gas/Oil Contact. SPE Latin American and Caribbean Petroleum Engineering Conference. Rio de Janeiro – RJ.

Lysen, E. H. Peacs. (2002), Opportunities for early application of CO2 sequestration technology. IEA GHG R & D Programme.

MacGill, I.; Passey, R. and Daly, T. (2006). The limited role for Carbon Capture and Storage (CCS) technologies in a sustainable Australian energy future. International Journal of Environmental Studies 63. p. 752-763.

Markandya, A. and Halsnaes, K. (2002). Climate change and sustainable development: prospects for developing countries. Earthscan: London, UK.

Martins, J.M.F. (2009). Reservatórios estratégicos de CO2 para futuro uso em projetos de recuperação avançada de petróleo e armazenamento geológico de CO2 no Brasil. MSc Thesis. Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS. Porto Alegre.

Mathews, J.A. (2008). How carbon credits could drive the emergence of renewable energies. Energy Policy, 36, 10, 3633-3639.

Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S. and Aiken, T. (2010). Geological storage of CO2 in saline aquifers - a review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4, 4, 659-667.

Nguyen, N. and Allinson, W.G. (2002). The economics of CO2 Capture and Geological Storage. Paper 77810, SPE Asia Pacific Oil and Gas Conference and Exhibition. Melbourne, Australia.

NOAA. (2019). Global Greenhouse Gas Reference Network. Available at: <https://www.esrl.noaa.gov/gmd/ccgg/trends/graph.html>. (Accessed March, 2019).

Paraguassú, M.M., Câmara, G., Rocha, P.S. and Andrade, J.C.S. (2015). An approach to assess risks of carbon geological storage technology. Int. J. Global Warming, Vol. 7, No. 1, pp.89–109.

Qiao, X. and Li, G. (2014). Factors influencing the safety of CO2 geological storage in deep saline aquifers. Xiaojuan Qiao and Guomin Li. Environmental Engineering and Management Journal, 13, 2917-2928.

Ravagnani, A.G.; Ligero, E. L. and Suslick, S.B. (2009). CO2 sequestration through enhanced oil recovery in a mature oil field. Journal of Petroleum Science and Engineering. 65, 3, 129-138.

Rochedo, P.R.R.; Costa, I.V.L.; Império M.; Hoffmann B.S.; Merschmann P.R.C.; Oliveira, C.C.N.; Szklo A. and Schaeffer R. (2016). Carbon capture potential and costs in Brazil. Journal of Cleaner Production, 131, 280-295.

Rosa, A. J.; Carvalho, R. S. and Xavier, J. A. D. (2006). Métodos Especiais de Recuperação Secundária. In: Engenharia de Reservatórios de Petróleo, Jorge Gama (Ed.), Interciência, p.699-700. Rio de Janeiro.

Sasaki, K. (2004). Carbon Sequestration Technology – Current Status and Future Outlook. IEEJ Publication.

Silva, L.F.E and Macedo, A.H. (2012). Um estudo exploratório sobre o crédito de carbono como forma de investimento. Rev. Elet. em Gestão, Educação e Tecnologia Ambiental, 8, p. 1651-1669.

Smith, L.A.; Gupta, N.; Sass, B.M. and Bubenik, T.A. (2002). Engineering and Economic Assessment of Carbon Dioxide Sequestration in Saline Formations. Journal of Energy & Environmental Research, 2, p.5.

Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P. and Scholes, B. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118, 1, 6-28.

Government Europa and TOTAL (2018). Using CCUS to eliminate greenhouse gas emissions. 20th April 2018. Available at: <https://www.governmenteuropa.eu/total-ccus-eliminate-greenhouse-gas/86701/>. (Accessed March, 2019).

UNEP/GRID-Arendal. (1999). Global Atmospheric Concentration of CO2. UNEP/GRID-Arendal Maps and Graphics Library. Available online at: <http://www.grida.no/publications/vg/climate/page/3062.aspx> (Accessed April, 2017).

Wang, X. and Qie, S. (2018). When to invest in carbon capture and storage: A perspective of supply chain. Computers & Industrial Engineering. Volume 123, September 2018, Pages 26-32.

West, Julia M.; Pearce, Jonathan; Bentham, Michelle; Maul, Philip. (2005). Environmental issues and the geological storage of CO2: a discussion document. European Environment, 15, 4, 250-259.

World Commission on Environment and Development. (1987). Our common future (‘The Brundtland Report’). Oxford: Oxford University Press.

Zahid, U.; Lim, Y.; Jung, J. and Han, C. (2011). CO2 geological storage: A review on present and future prospects. Korean Journal of Chemical Engineering, 28, 3, 674-685.

ZEP. (2011). Zero Emissions Platform. The Costs of CO2 Capture, Transport and Storage. Post-demonstration CCS in the EU. European Technology Platform for Zero Emission Fossil Fuel Power Plants.

Zucatelli, P.J. (2015). Análise do potencial técnico do sequestro geológico de CO2 na bacia do Espírito Santo onshore e offshore. Dissertação. Universidade Federal do Espírito Santo. São Mateus – ES. Brasil.

Descargas

Publicado

24/03/2019

Cómo citar

ZUCATELLI, P. J.; MENEGUELO, A. P.; DINIZ CHAVES, G. de L.; CHAVES, G. de L. D.; TOSTA, M. de C. R. La aplicación, las inversiones requeridas y los costos operativos del secuestro geológico de CO2: un estudio de caso. Research, Society and Development, [S. l.], v. 8, n. 6, p. e12861023, 2019. DOI: 10.33448/rsd-v8i6.1023. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/1023. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías