Evaluación de Catalizadores de CoMo y NiW soportados em Óxido de Niobio em Reacción de Hidrodesulfuración de 3-metiltiofeno

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10307

Palabras clave:

Gasolina FCC; 3-metiltiofeno; Óxido de Nióbio; Hidrodesulfuración; Interacción metal-soporte.

Resumen

La eficiencia del óxido de niobio como soporte para catalizadores de hidrodesulfuración (HDS), CoMo y NiW, se investigó en la reacción HDS de una molécula modelo representativa de los compuestos de azufre presentes en la gasolina FCC (3-metiltiofeno). El catalizador NiW/Nb2O5 mostró la mayor actividad catalítica, seguido por el catalizador CoMo/Nb2O5 calcinado y el catalizador CoMo/Nb2O5 no calcinado. Sin embargo, a pesar de la menor actividad catalítica, el catalizador CoMo/Nb2O5 mostró una mejor relación pentano/penteno, hecho que implica una menor formación de productos hidrogenados. Además, se llevaron a cabo caracterizaciones químicas y de textura para investigar la estructura de los catalizadores preparados. A partir del análisis de TPD-NH3 se observa un perfil de acidez con predominio de ácidos débiles/fuertes y débiles/moderados para los catalizadores de CoMo y NiW, respectivamente. El análisis del área superficial específica (BET) mostró un área específica baja en todos los catalizadores CoMo y NiW, principalmente debido a la baja área superficial del óxido de niobio. Finalmente, el análisis estructural por difracción de rayos X (DRX) sugiere que los catalizadores preparados no tienen forma cristalina.

Citas

Aray, Y., Zambrano, D., Cornejo, M. H., Ludeña, E. V., Iza, P., Vidal, A. B., Coll, D. S., Jímenez, D. M., Henriquez, F., & Paredes, C. (2014). First-principles study of the nature of niobium sulfide catalyst for hydrodesulfurization in hydrotreating conditions. Journal of Physical Chemistry C, 118(48), 27823–27832. https://doi.org/10.1021/jp5059269

Bendezú, S., Cid, R., Fierro, J. L. G., & Agudo, A. L. (2000). Thiophene hydrodesulfurization on sulfided Ni , W and NiW / USY zeolite catalysts : effect of the preparation method. Applied Catalysis A : General, 197, 47–60.

Castillo-villalón, P., Ramirez, J., & Vargas-luciano, J. A. (2014). Analysis of the role of citric acid in the preparation of highly active HDS catalysts. Journal of Catalysis, 320, 127–136. https://doi.org/10.1016/j.jcat.2014.09.021

Daudin, A., Brunet, S., Perot, G., Raybaud, P., & Bouchy, C. (2007). Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts. Journal of Catalysis, 248(1), 111–119. https://doi.org/10.1016/j.jcat.2007.03.009

Falk, G. S., Borlaf, M., Novaes de Oliveira, A. P., Rodrigues Neto, J. B., Moreno, R., & Hotza, D. (2014). Síntese e caracterização de Nb2O5 por rota coloidal. Congresso Brasileiro de Engenharia e Ciências Dos Materiais, 1, 2665–2672. https://doi.org/10.2466/pr0.1981.48.1.335

Faro, A. C., Carlota, A., & Santos, B. (2006). Cumene hydrocracking and thiophene HDS on niobia-supported Ni, Mo and Ni-Mo catalysts. Catalysis Today, 118, 402–409. https://doi.org/10.1016/j.cattod.2006.07.027

Gaborit, V., Allali, N., Geantet, C., Breysse, M., Vrinat, M., & Danot, M. (2000). Niobium sulfide as a dopant for hydrotreating NiMo catalysts. Catalysis Today, 57(3–4), 267–273. https://doi.org/10.1016/S0920-5861(99)00336-3

Gonzalez-Cortes, S. L., Qian, Y., Almegren, H. A., Xiao, T., Uznetsov, V. L., & Edwards, P. P. (2014). Citric acid-assisted synthesis of c-alumina-supported high loading CoMo sulfide catalysts for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions. Applied Petrochemical Research, 5, 181–197.

González-Cortés, S. L., Rugmini, S., Xiao, T., Green, M. L. H., Rodulfo-Baechler, S. M., & Imbert, F. E. (2014). Deep hydrotreating of different feedstocks over a highly active Al2O3-supported NiMoW sulfide catalyst. Applied Catalysis A: General, 475, 270–281. https://doi.org/10.1016/j.apcata.2014.01.045

Gutierrez, A., Turpeinen, E. M., Viljava, T. R., & Krause, O. (2017). Hydrodeoxygenation of model compounds on sulfided CoMo/Γ-Al2O3 and NiMo/Γ-Al2O3 catalysts; Role of sulfur-containing groups in reaction networks. Catalysis Today, 285, 125–134. https://doi.org/10.1016/j.cattod.2017.02.003

Haandel, L. Van, Bremmer, G. M., Hensen, E. J. M., & Weber, T. (2017). The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo / Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 351, 95–106. https://doi.org/10.1016/j.jcat.2017.04.012

Huirache-Acuña, R., Pawelec, B., Loricera, C. V., Rivera-Muñoz, E. M., Nava, R., Torres, B., & Fierro, J. L. G. (2012). Comparison of the morphology and HDS activity of ternary Ni(Co)-Mo-W catalysts supported on Al-HMS and Al-SBA-16 substrates. Applied Catalysis B: Environmental, 125, 473–485. https://doi.org/10.1016/j.apcatb.2012.05.034

Kaluza, L., Gulkova, D., Zdraz, M., & Vít, Z. (2012). CoMo / ZrO2 Hydrodesulfurization Catalysts Prepared by Chelating Agent Assisted Spreading. Catalysis Letters, 142, 969–974. https://doi.org/10.1007/s10562-012-0857-6

Kaluza, L., & Zdražil, M. (2018). Relative activity of Niobia-supported CoMo hydrodesulphurization catalyst prepared with NTA : A kinetic approach. Catalysis Communications, 107(October 2017), 62–67. https://doi.org/10.1016/j.catcom.2018.01.020

Kitano, T., Shishido, T., Teramura, K., & Tanaka, T. (2012). Brønsted Acid Property of Alumina-Supported Niobium Oxide Calcined at High Temperatures: Characterization by Acid-Catalyzed Reactions and Spectroscopic Methods. The Journal of Physical Chemistry C, 116, 11615–11625.

Lamic, A. F., Daudin, A., Brunet, S., Legens, C., Bouchy, C., & Devers, E. (2008). Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molybdenum sulfide-based catalysts. Applied Catalysis A: General, 344(1–2), 198–204. https://doi.org/10.1016/j.apcata.2008.04.023

Lélias, M. A., Guludec, E. Le, Mariey, L., Gestel, J. Van, Travert, A., Oliviero, L., & Mauge, F. (2010). Effect of EDTA addition on the structure and activity of the active phase of cobalt – molybdenum sulfide hydrotreatment catalysts. Catalysis Today, 150, 179–185. https://doi.org/10.1016/j.cattod.2009.07.107

León, J. N. D. De, Zavala-Sánchez, L. A., Suárez-Toriello, V. A., Alonso-Núnez, G., Zepeda, T. A., Yocupicio, R. I., Reyes, J. A. D. L., & Fuentes, S. (2017). Support effects of NiW catalysts for highly selective sulfur removal from light hydrocarbons. Applied Catalysis B, Environmental, 213, 167–176. https://doi.org/10.1016/j.apcatb.2017.05.014

Lu, X., Zhang, S., Xing, J., Wang, Y., Chen, W., Ding, D., Wu, Y., Wang, S., Duan, L., & Hao, J. (2020). Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, xxxx. https://doi.org/10.1016/j.eng.2020.03.014

Méndez, F. J., Franco-López, O. E., Bokhimi, X., Solís-Casados, D. A., Escobar-Alarcón, L., & Klimova, T. E. (2017). Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Applied Catalysis B : Environmental, 219, 479–491. https://doi.org/10.1016/j.apcatb.2017.07.079

Naboulsi, I., Lebeau, B., Linares, F. C., Brunet, S., Mallet, M., Michelin, L., Bonne, M., Carteret, C., & Blin, J.-L. (2018). Selective direct desulfurization way (DDS) with CoMoS supported over mesostructured titania for the deep hydrodesulfurization of 4,6-dimethydibenzothiophene. Applied Catalysis A, General, 563, 91–97. https://doi.org/10.1016/j.apcata.2018.06.033

Pelardy, F., Daudin, A., Devers, E., Dupont, C., Raybaud, P., & Brunet, S. (2016). Deep HDS of FCC gasoline over alumina supported CoMoS catalyst: Inhibiting effects of carbon monoxide and water. Applied Catalysis B: Environmental, 183, 317–327. https://doi.org/10.1016/j.apcatb.2015.10.026

Pelardy, F., Silva, A., Daudin, A., Devers, E., Belin, T., & Brunet, S. (2017). Sensitivity of supported MoS2-based catalysts to carbon monoxide for selective HDS of FCC gasoline : Effect of nickel or cobalt as promoter. “Applied Catalysis B, Environmental,” 206, 24–34. https://doi.org/10.1016/j.apcatb.2016.12.057

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica.

Pereyma, V. Y., Klimov, O. V, Prosvirin, I. P., Gerasimov, E. Y., Yashnik, S. A., & Noskov, A. S. (2018). Effect of thermal treatment on morphology and catalytic performance of NiW / Al2O3 catalysts prepared using citric acid as chelating agent. Catalysis Today, 305(April 2017), 162–170. https://doi.org/10.1016/j.cattod.2017.07.019

Salazar, N., Beinik, I., & Lauritsen, J. V. (2017). Single-layer MoS2 formation by sulfidation of molybdenum oxides in different oxidation states on Au(111). Royal Society of Chemistry, 19, 14020.

Santos, D. P. B., Silva, C. T., & Albuquerque, R. V. T. de. (2017). Preparação e Caracterização do Óxido de Nióbio obtido a partir do Ácido Nióbico (Nb2O5nH2O) por Decomposição Térmica Direta. Exatas Online, 8(2), 1–8. https://doi.org/10.1016/j.pmatsci.2016.02.001

Santos, A. S. dos. (2017). Transformation de composes modeles soufres et olefiniques repre sentatifs d’une essence de fcc – approche experimentale et theorique. Universite de Poitiers.

Santos, A. S. dos, Brunet, S., Girard, E., & Leflaive, P. (2019). Competitive adsorptions between thiophenic compounds over a CoMoS/Al2O3 catalyst under deep HDS of FCC gasoline. Applied Catalysis A : General, 570(25), 292–298.

Silva, J. I. S., & Secchi, A. R. (2018). An approach to optimize costs during ultra-low hydrodesulfurization of a blend consisting of different oil streams. Brazilian Journal of Chemical Engineering, 35(4), 1293–1304. https://doi.org/10.1590/0104-6632.20180354s20170370

Silva, M. L. C. P., Silva, G. L. J. P., & Tagliaferro, G. V. (2000). Obtenção e caracterização do óxido de nióbio 9(V) hidratado por precipitação em solucção homogênea. Congresso Brasileiro de Engenharia e Ciência Dos Materiais, 14(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

Valencia, D., & Klimova, T. (2012). Kinetic study of NiMo / SBA-15 catalysts prepared with citric acid in hydrodesulfurization of dibenzothiophene. Catalysis Communications, 21, 77–81. https://doi.org/10.1016/j.catcom.2012.02.003

Valencia, D., Klimova, T., & Pena, L. (2014). CoMo / SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Applied Catalysis B : Environmental, 147, 879–887. https://doi.org/10.1016/j.apcatb.2013.10.019

Descargas

Publicado

02/12/2020

Cómo citar

ROSÁRIO, R. L. do .; SANTOS, R. C. .; SANTOS, A. S. dos .; CARVALHO, A. .; BRUNET, S.; PONTES, L. A. M. . Evaluación de Catalizadores de CoMo y NiW soportados em Óxido de Niobio em Reacción de Hidrodesulfuración de 3-metiltiofeno. Research, Society and Development, [S. l.], v. 9, n. 11, p. e74391110307, 2020. DOI: 10.33448/rsd-v9i11.10307. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10307. Acesso em: 26 nov. 2024.

Número

Sección

Ingenierías