Sistemas de biorretención para la gestión de las aguas pluviales: panorama y criterios de diseño

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10335

Palabras clave:

Hidrología urbana; Desarrollo de bajo impacto; Infraestructura verde.

Resumen

La urbanización dispersa altera el ciclo hidrológico debido a la intensa impermeabilización, y consecuente reducción de la infiltración de agua lluvia. Es evidente la necesidad de restaurar las condiciones naturales de las cuencas urbanas para el debido manejo de la escorrentía superficial. Este artículo describe el estado del arte sobre los sistemas de biorretención (jardines de lluvia, sumideros filtrantes, zanjas de infiltración y humedales). Estos sistemas representan alternativas a los clásicos sistemas de drenaje convencionales, permitiendo el rescate de las condiciones hidrológicas de la reurbanización. El desempeño de tales estructuras, verificado a través de una intensa investigación bibliográfica, corrobora su eficiencia en términos de aspectos cualitativos y cuantitativos de la escorrentía superficial. Por otro lado, la falta de dicha información, para países con climas diferentes a aquellos donde se realiza la investigación, demuestra la necesidad de proponer criterios generales de diseño para la aplicación efectiva. De esta forma en líneas generales, este trabajo presenta los principales criterios para el diseño de sistemas de biorretención, sirviendo de guía para trabajos futuros.

Biografía del autor/a

Lucas Humberto Silva, Universidade Federal de Uberlândia

Eng. Civil (UFV-CRP), Mestrando em Eng. Civil - UFU.

 

Frederico Carlos Martins de Menezes Filho, Universidade Federal de Viçosa, Campus Rio Paranaíba

Doutor em Rec. Hídricos e Saneamento Ambiental (IPH-UFRGS); Prof. Adjunto (UFV-CRP).

Ana Luiza Melo Rodrigues, Universidade Federal de Viçosa

Engenheira Civil (UFV-CRP); Mestre em Engenharia Agrícola (UFV) e Doutoranda em Engenharia Agrícola (DEA-UFV).

Eduardo Beraldo de Morais, Universidade Federal de Mato Grosso

Doutor em Ciências Biológicas (UNESP). Prof. Associado (UFMT).

Citas

Baptista, M., Nascimento, N., & Barraud, S. (2005). Técnicas compensatórias de drenagem urbana. ABRH, Porto Alegre.

Blecken, G. T., Zinger, Y., Muthanna, T. M., Deletic, A., Fletcher, T. D., & Viklander, M. (2007). The influence of temperature on nutrient treatment efficiency in stormwater biofilter systems. Water Science & Technology. 56(10), 83–91.

Brown, R. A., & Hunt, W. F. (2011). Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. Journal of Irrigation and Drainage Engineering. 137(3), 132–143.

Cadore, R. C. (2016). Critérios de dimensionamento de biorretenções. Dissertação. Universidade Federal de Santa Maria . Centro de Tecnologia. Programa de Pós-Graduação em Engenharia Civil.. 116p.

CNT. Center for Neighborhood Technology. (2010). The Value of Green Infrastructure – A guide to recognizing its economic, environmental and social benefits. Recuperado de http://www.cnt.org/repository/gi-values-guide.pdf.

CIRIA. (2015). The SUDS manual. Department of Environment Food & Rural Affairs. London. 968 p. Recuperado de http://www.scotsnet.org.uk/documents/NRDG/CIRIA-report-C753-the-SuDS-manual-v6.pdf.

City of Chicago. (2003). A guide to stormwater best management practices. Chicago, Estados Unidos. 29 p. Recuperado de https://www.cityofchicago.org/dam/city/depts/doe/ge neral/NaturalResourcesAndWaterConservation_PDFs/Water/guideToStormwaterBMP.pdf. Acessado em 2017.

Cormier, N. S., & Pellegrino, P. R. M. (2008). Infra-estrutura Verde: uma estratégia paisaística para a água urbana. Paisagem Ambiente: ensaios. (25), 127–142.

Costa, A. R., Siqueira, E. Q., & Menezes Filho, F. C. M. de. (2007). Curso básico de hidrologia urbana: nível 3. Brasília: ReCESA. 130 p.

Daniel Júnior, J. J. (2013). Avaliação de uma biorretenção como estrutura sustentável de drenagem urbana. Dissertação. Universidade Federal de Santa Maria. Centro de Tecnologia. Programa de Pós-Graduação em Engenharia Civil. 115 p.

Davis, A. P., Shokouhian, M., Sharma, H., Minami, C., & Winogradoff, D. (2003). Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal. Water Environment Research. 75(1), 73–82.

Davis, A. P. (2007). Field Performance of Bioretention: Water Quality. Environmental Engineering Science. 24(8), 1048–1064.

Davis, A. P., Hunt, W. F., Traver, R. G., & Clar, M. (2009). Bioretention Technology: Overview of Current Practice and Future Needs. Journal of Environmental Engineering. 135(3), 109–117.

Debusk, K. M., & Wynn, T. M. (2011). Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. Journal of Environmental Engineering, 137(9), 800–808.

Diblasi, C. J., Li, H., Davis, A. P., & Ghosh, U. (2009). Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility. Environmental Science and Technology. 43(2), 494-502.

Dietz, M. E., & Clausen, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental Science and Technology. 40(4), 1335–1340.

Eckart, K., Mcphee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development – A review. Science of the Total Environment. 607–608, 413–432. Recuperado de http://dx.doi.org/10.1016/j.scitotenv.2017.06.254.

Gomez, J. F. J. (2018). Raingarden hydraulic conditions and functioning under variable precipitation scenarios. Master Thesis. Norwegian University of Life Sciences. 2016. Recuperado de https://brage.bibsys.no/xmlui/handle/11250/2398819.

Graciosa, M. C. P., Mendiondo, E. M., & Chaudhry, F. H. (2008). Metodologia para o Dimensionamento de Trincheiras de Infiltração para o Controle do Escoamento Superficial na Origem. Revista Brasileira de Recursos Hídricos. 13, 207–214.

Hatt, B. E., Fletcher, T. D., & Deletic, A. (2007). Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water Research. 41(12), 2513–2524.

Henderson, C., Greenway, M., & Phillips, I. (2007). Removal of dissolved nitrogen, phosphorous and carbon from stormwater by biofiltration mesocosms. Water Science and Technology. 55(4), 183–191.

Hong, E., Seagren, E. A., & Davis, A. P. (2006). Sustainable Oil and Grease Removal from Synthetic Stormwater Runoff Using Bench-Scale Bioretention Studies. Water Environment Research. 78(2), 141–155.

Hsieh, C., Davis, A. P., & Needelman, B. A. (2007). Bioretention Column Studies of Phosphorus Removal from Urban Stormwater Runoff. Water Environment Research. 79(2), 177–184.

Hsieh, C. H., & Davis, A. P. (2005). Multiple-event study of bioretention for treatment of urban storm water runoff. Water Science and Technology. 51(3–4), 177–181.

Hunt, W. F., Jarret, A. R., Smith, J. T.; & Sharkey, L. J. (2006). Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. Journal of Irrigation and Drainage Engineering. 132(6), 600–608.

Hunt, W. F., Smith, J. T., Jadlocki, S. J., Hathaway, J. M., & Eubanks, P. R. (2008). Pollutant Removal and Peak Flow Mitigation by a Bioretention Cell in Urban Charlotte, N.C. Journal of Environmental Engineering. 134(5), 403–408.

Idaho. (2005). Catalog of Stormwater Best Management Practices for Idaho Cities and Counties. Idaho Department of Environmental Quality. Recuperado de http://www.deq.idaho.gov/media/622263-Stormwater.pdf.

Kim, H., Seagren, E. A., & Davis, A. P. (2003). Engineered Bioretention for Removal of Nitrate from Stormwater Runoff. Water Environment Research. 75(4), 355–367.

Lakatos, E. M., & Marconi, M. A. Fundamentos de metodologia científica. (2017). (8a. ed.), São Paulo: Atlas.

Li, H., Davis, A. P. (2008). Urban particle capture in bioretention media I: Laboratory and field studies. Journal of environmental engineering. 134(6), 409-4018.

Line, D. E., Brown, R. A., Hunt, W. F., Asce, M., & Lord, W. G. (2012). Effectiveness of LID for Commercial Development in North Carolina. Journal of Environmental Engineering. 680–689.

Menezes Filho, F. C. M., & Ribeiro da Costa, A. (2012). Sistemática de Cálculo para o Dimensionamento de Galerias de Águas Pluviais: uma Abordagem Alternativa. REEC - Revista Eletrônica de Engenharia Civil. 4(1), 12–22.

Melo, T. A. T., Coutinho, A. P., Cabral, J. J. S. P., Antonino, A. C. D.; & Cirilo, J. A. (2014). Jardim de chuva: sistema de biorretenção para o manejo das águas pluviais urbanas. Ambiente Construído. Porto Alegre, 14(4), 147-165.

Melo, T. A. T., Coutinho, A. P., & Cabral, J. J. S. P. (2015). Manejo de águas pluviais através de um sistema de biorretenção. In: XXI Simpósio Brasileiro De Recursos Hídricos. Brasília.

Miguez, M. G., Veról, A. P; & Rezende, O. M. (2016). Drenagem urbana: do projeto tradicional à sustentabilidade. Rio de Janeiro: Elsevier.

Minnesota. (2017). The Minnesota Stormwater Manual – version 2. Minnesota Pollution Control Agency, January 2008. Recuperado de http://www.capitolregionwd.org/wp-content/uploads/2012/09/MNStormwaterManual.pdf.

Moura, N. C. B. (2013). Biorretenção - Tecnologia ambiental urbana para manejo das águas de chuva. Tese (Doutorado em arquitetura). Universidade de São Paulo. 299 p.

Muthanna, T. M., Viklander, M., Blecken, G., & Thorolfsson, S. T. (2007). Snowmelt pollutant removal in bioretention areas. Water Research. 41(18), 4061–4072.

North Carolina Department of Environment and Natural Resources (NCDENR). (2009). NCDENR Stormwater BMP Manual. Carolina do Norte, EUA. Recuperado de https://deq.nc.gov/about/divisions/energy-mineral-land-resources/energy-mineral-land-permit-guidance/stormwater-bmp-manual.

NRCS. (1986). Urban Hydrology for Small Watersheds TR-55. USDA Natural Resource Conservation Service Conservation Engeneering Division Technical Release 55.

Paus, K., & Braskerud, B. (2014). Suggestions for Designing and Constructing Bioretention Cells for a Nordic Climate. Journal of Water Management and Research. 70, 139-150.

Porto Alegre. (2005). Prefeitura Municipal. Departamento de Esgotos Pluviais, DEP. Plano Diretor de Drenagem Urbana - Manual de Drenagem, vol. VI. IPH/UFRGS.

Prince George’s County, Maryland – Department of Environmental Resources. (2007). Bioretention Manual. Prince george’s county, Maryland, 206 p. Recuperado de http://www.ct.gov/deep/lib/deep/p2/raingardens/bioretention_manual_2009_version.pdf.

Righetto, A. M., Gomes, K. M., & Freitas, F. R. S. (2017). Poluição difusa nas águas pluviais de uma bacia de drenagem urbana. Engenharia Sanitária e Ambiental. 22(6), 1109-1120.

Roy-Poirier, A., Champagne, P., & Filion, Y. (2010). Review of Bioretention system research and design: Past, presente and future. Journal of environmental engineering. 136(9), 878-889.

Rusciano, G. N., & Obropta, C. C. (2007). Bioretention column study: Fecal coliform and total suspended solids reductions. American Society of Agricultural and Biological Engineers. 504, 1261-1269.

Silveira, A. L. L. da. (1998). Hidrologia urbana no Brasil. In: Braga, B. P. F; Tucci, C. E. M; Tozzi, M. Drenagem urbana: gerenciamento, simulação, controle. Porto Alegre: Editora da UFRGS/ABRH, p.8-25.

Tucci, C. E. (2007). Inundações Urbanas. Coleção ABRH de Recursos Hídricos, 11. Porto Alegre: ABRH/RHAMA, 393 p.

UNHSC. University of New Hampshire Stormwater Center. (2005). Data Report. Recuperado de https://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/pubs_specs_info/a nnual_data_report_06.pdf.

United States Department of Agriculture (USDA). (2001) Stream corridor restoration. Federal Interagency stream restoration working group. EUA. 637 p.

United States Environmental Protection Agency (USEPA). (1999). Preliminary data summary of urban storm water best management practices. Washington, EUA. 214 p.

Vermont. (2002). The Vermont Stormwater Management Manual – Volume II – Technical Guidance. Vermont Agency of Natural Resources. Recuperado de http://dec.ver mont.gov/ sites/dec/files/wsm/stormwater/docs/Resources/sw_manual-vol2.pdf.

Virginia. (2009). Virginia Stormwater Management Handbook - Chapter 10 – Uniform Stormwater BMP Sizing Criteria. Virginia. Recuperado de http://www.deq.virginia.g ov/fileshare/ wps/2013_SWM_Handbook/Chapter%2010/.

Wardynski, B. J., & Hunt, W. F. (2002). Are Bioretention Cells Being Installed Per Design Standards in North Carolina? A Field Study. Journal of environmental engineering. 138(12), 1210-1217.

Weiss, P. T., Erickson, A. J., & Gulliver, J. S. (2007). Cost and Pollutant Removal of Storm-Water Treatment Practices. Journal of Water Resources Planning and Management. 133(3), 218–229.

Wisconsin Department of Natural Resources (WDNR). (2017). Recarga Model 2.3. Infiltration Basins, Bioretention Devices. Recuperado de https://dnr.wi.gov/topic/s tormwater/standards/recarga.html.

Publicado

29/11/2020

Cómo citar

SILVA, L. H.; MENEZES FILHO, F. C. M. de; RODRIGUES, A. L. M.; MORAIS, E. B. de . Sistemas de biorretención para la gestión de las aguas pluviales: panorama y criterios de diseño. Research, Society and Development, [S. l.], v. 9, n. 11, p. e69591110335, 2020. DOI: 10.33448/rsd-v9i11.10335. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10335. Acesso em: 15 ene. 2025.

Número

Sección

Ingenierías