Propiedades químicas cuánticas utilizando el método DFT: una herramienta teórica aplicada en el estudio de los inhibidores de corrosión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10499

Palabras clave:

Modelado molecular; Corrosión; Inhibidores de corrosión orgánicos.

Resumen

La corrosión es un problema global que promueve un gran impacto económico, por costos directos e indirectos, que afecta a países desarrollados y/o en vías de desarrollo. Se utilizan varios métodos en la industria para evitar y reducir la tasa de deterioro de los materiales metálicos. Los inhibidores de corrosión son agregados a medios corrosivos para mitigar el deterioro del metal frente a soluciones a las cuales están expuestos; como es bien sabido son compuestos orgánicos que contienen en su estructura molecular grupos polares como átomos de nitrógeno, sulfuro y/o oxigeno; compuestos heterocíclicos con grupos funcionales polares y dobles enlaces. Para la mejora del proceso anticorrosivo, se han investigado nuevos materiales de forma experimental y mediante cálculos teóricos. El estudio del mecanismo de corrosión y la acción de los inhibidores de corrosión, así como los factores que influyen en la eficacia de la inhibición, ha sido objeto de numerosos estudios teóricos. Entre ellos, los estudios basados en la teoría funcional de la densidad han recibido gran atención. El objetivo de este artículo es presentar una breve revisión del uso de cálculos teóricos, destacando el método de la teoría de funcionales de la densidad (DFT) como herramienta en el análisis de las propiedades de moléculas orgánicas con posibles aplicaciones como inhibidores de corrosión. Esta revisión presenta las propiedades electrónicas e índices de reactividad más importantes relacionados con la eficiencia de los inhibidores de corrosión orgánicos tales como: las energías de los orbitales moleculares de frontera y la energía del gap (HOMO / LUMO), momento dipolar, electronegatividad, potencial químico, dureza, suavidad, fracción de electrones transferidos, índice de electrofilicidad global. Además, también se han explorado descriptores químicos cuánticos locales como la carga, la función de Fukui y la suavidad. Como conclusión, se puede considerar que los cálculos de DFT proporcionan una fuerte evidencia para complementar las investigaciones experimentales o incluso para predecir con seguridad algunas propiedades experimentalmente desconocidas relacionadas con los inhibidores de corrosión.

Citas

Ahmed, M. H. O., Al-Amiery, A. A., Al-Majedy, Y. K., Kadhum, A. A. H., Mohamad, A. B., & Gaaz, T. S. (2018). Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results in Physics, 8, 728-733.

Ajmal, M., Jamal, D., & Quraishi, M. A. (2000). Fatty acid oxadiazoles as acid corrosion inhibitors for mild steel. Anti-Corrosion Methods and Materials, 47(2), 77-82.

Al-Fakih, A. M., Abdallah, H. H., & Aziz, M. (2019). Experimental and theoretical studies of the inhibition performance of two furan derivatives on mild steel corrosion in acidic medium. Materials and Corrosion, 70(1), 135-148.

Al-Sodani, K. A. A., Maslehuddin, M., Al-Amoudi, O. S. B., Saleh, T. A., & Shameem, M. (2018). Efficiency of generic and proprietary inhibitors in mitigating Corrosion of Carbon Steel in Chloride-Sulfate Environments. Scientific Reports, 8(1), 11443.

Ansari, K. R., Sudheer, Singh, A., & Quraishi, M. A. (2015). Some Pyrimidine Derivatives as Corrosion Inhibitor for Mild Steel in Hydrochloric Acid. Journal of Dispersion Science and Technology, 36(7), 908-917.

Atkins, P., & Paula, J. D. (2006). Physical Chemistry. New York: Oxford University Press.

Barone, V., & Cossi, M. (1998). Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, 102(11), 1995-2001.

Beda, R. H. B., Niamien, P. M., Avo Bilé, E. B., & Trokourey, A. (2017). Inhibition of Aluminium Corrosion in 1.0 M HCl by Caffeine: Experimental and DFT Studies. Advances in Chemistry, 2017, 6975248.

Bentiss, F., Traisnel, M., Vezin, H., & Lagrenée, M. (2003). Linear resistance model of the inhibition mechanism of steel in HCl by triazole and oxadiazole derivatives: structure–activity correlations. Corrosion Science, 45(2), 371-380.

Bouayed, M., Rabaa, H., Srhiri, A., Saillard, J. Y., Bachir, A. B., & Beuze, A. L. (1998). Experimental and theoretical study of organic corrosion inhibitors on iron in acidic medium. Corrosion Science, 41(3), 501-517.

Chen, J., Qiang, Y., Peng, S., Gong, Z., Zhang, S., Gao, L., et al. (2018). Experimental and computational investigations of 2-amino-6-bromobenzothiazole as a corrosion inhibitor for copper in sulfuric acid. Journal of Adhesion Science and Technology, 32(19), 2083-2098.

Comas-Vives, A., & Harvey, J. N. (2011). How Important Is Backbonding in Metal Complexes Containing N-Heterocyclic Carbenes? Structural and NBO Analysis. European Journal of Inorganic Chemistry, 2011(32), 5025-5035.

Cruz, J., Martínez-Aguilera, L. M. R., Salcedo, R., & Castro, M. (2001). Reactivity properties of derivatives of 2-imidazoline: an ab initio DFT study. International Journal of Quantum Chemistry, 85(4‐5), 546-556.

Cruz, J., Martı́nez, R., Genesca, J., & Garcı́a-Ochoa, E. (2004). Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J Electroanal Chem., 566(1), 111-121.

Domingo, L. R., Aurell, M. J., Pérez, P., & Contreras, R. (2002). Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 58(22), 4417-4423.

Donnelly, B., Downie, T. C., Grzeskowiak, R., Hamburg, H. R., & Short, D. (1974). A study of the inhibiting properties of some derivatives of thiourea. Corrosion Science, 14(10), 597-606.

Ebenso, E. E., Arslan, T., Kandemirli, F., Caner, N., & Love, I. (2010). Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. International Journal of Quantum Chemistry, 110(5), 1003-1018.

Frau, J., & Glossman-Mitnik, D. (2017). Conceptual DFT Descriptors of Amino Acids with Potential Corrosion Inhibition Properties Calculated with the Latest Minnesota Density Functionals. [Original Research]. Frontiers in Chemistry, 5(16).

Fukui, K. (1982). Role of Frontier Orbitals in Chemical Reactions. Science, 218(4574), 747-754.

Gad, E. A. M., Azzam, E. M. S., & Halim, S. A. (2018). Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egyptian Journal of Petroleum, 27(4), 695-699.

Ganash, A. A. (2018). Theoretical and experimental studies of dried marjoram leaves extract as green inhibitor for corrosion protection of steel substrate in acidic solution. Chem Eng Commun., 205(3), 350-362.

Gao, G., & Liang, C. (2007). Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass. Electrochimica Acta, 52(13), 4554-4559.

Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci., 50(11), 2981-2992.

Gece, G. (2015). Corrosion inhibition behavior of two quinoline chalcones: insights from density functional theory. Corrosion Reviews, 33(3-4), 195.

Gece, G., & Bilgiç, S. (2012). Molecular-Level Understanding of the Inhibition Efficiency of Some Inhibitors of Zinc Corrosion by Quantum Chemical Approach. Industrial & Engineering Chemistry Research, 51(43), 14115-14120.

Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103(5), 1793-1874.

Gentil, V. (2003). Corrosão. Rio de Janeiro: LTC.

Govindasamy, R., & Ayappan, S. (2015). Study of Corrosion Inhibition Properties of Novel Semicarbazones on Mild steel in Acidic Solutions. Journal of the Chilean Chemical Society, 60, 2786-2798.

Goyal, M., Kumar, S., Bahadur, I., Verma, C., & Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565-573.

Gravgaard, M., & van Lanschot, J. (2012). Cysteine as a non-toxic corrosion inhibitor for copper alloys in conservation. Journal of the Institute of Conservation, 35(1), 14-24.

Guo, L., Ren, X., Zhou, Y., Xu, S., Gong, Y., & Zhang, S. (2017). Theoretical evaluation of the corrosion inhibition performance of 1,3-thiazole and its amino derivatives. Arabian Journal of Chemistry, 10(1), 121-130.

Gyftopoulos, E. P., & Hatsopoulos, G. N. (1968). Quantum-thermodynamic definition of electronegativity. Proceedings of the National Academy of Sciences of the United States of America, 60(3), 786-793.

Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. [journal article]. Theor Chim Acta., 44(2), 129-138.

Hou, B., Li, X., Ma, X., Du, C., Zhang, D., Zheng, M., et al. (2017). The cost of corrosion in China. npj Materials Degradation, 1(1), 4.

Iczkowski, R. P., & Margrave, J. L. (1961). Electronegativity. Journal of the American Chemical Society, 83(17), 3547-3551.

John, S., & Joseph, A. (2012). Effective inhibition of mild steel corrosion in 1 M hydrochloric acid using substituted triazines: an experimental and theoretical study. RSC Advances, 2(26), 9944-9951.

Kanojia, R., & Singh, G. (2005). An interesting and efficient organic corrosion inhibitor for mild steel in acidic medium. Surface Engineering, 21(3), 180-186.

Khalil, N. (2003). Quantum chemical approach of corrosion inhibition. Electrochimica Acta, 48(18), 2635-2640.

Koch, G. H. (2017). 1 - Cost of corrosion. In A. M. El-Sherik (Ed.), Trends in Oil and Gas Corrosion Research and Technologies. Boston: Woodhead Publishing.

Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., & Joe, P. H. (2005). Chapter 1 - Cost of corrosion in the United States Handbook of Environmental Degradation of Materials. Norwich, NY: William Andrew Publishing.

Kokalj, A. (2010). Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochimica Acta, 56(2), 745-755.

Kokalj, A. (2012). On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem Phys., 393(1), 1-12.

Kokalj, A. (2013). Comments on the “Reply to comments on the paper ‘On the nature of inhibition performance of imidazole on iron surface’” by J.O. Mendes and A.B. Rocha. Corrosion Science, 70, 294-297.

Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1), 104-113.

Kovačević, N., & Kokalj, A. (2011). DFT Study of Interaction of Azoles with Cu(111) and Al(111) Surfaces: Role of Azole Nitrogen Atoms and Dipole–Dipole Interactions. The Journal of Physical Chemistry C, 115(49), 24189-24197.

Kürşat, E., & Obot, I. B. (2017). Quantum Chemical Investigation of the Relationship Between Molecular Structure and Corrosion Inhibition Efficiency of Benzotriazole and its Alkyl-Derivatives on Iron. Prot Met Phys Chem Surf., 53(6), 1139-1149.

Li, X., Deng, S., & Fu, H. (2012). Allyl thiourea as a corrosion inhibitor for cold rolled steel in H3PO4 solution. Corrosion Science, 55, 280-288.

Lukovits, I., Kálmán, E., & Zucchi, F. (2001). Corrosion Inhibitors—Correlation between Electronic Structure and Efficiency. Corrosion, 57(1), 3-8.

Martínez-Araya, J. I. (2015). Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? Journal of Mathematical Chemistry, 53(2), 451-465.

Masoud, M. S., Awad, M. K., Shaker, M. A., & El-Tahawy, M. M. T. (2010). The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel. Corrosion Science, 52(7), 2387-2396.

Maynard, A. T., Huang, M., Rice, W. G., & Covell, D. G. (1998). Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proceedings of the National Academy of Sciences, 95(20), 11578.

Morad, M. S. (2008). Inhibition of iron corrosion in acid solutions by Cefatrexyl: Behaviour near and at the corrosion potential. Corrosion Science, 50(2), 436-448.

Morell, C., Grand, A., & Toro-Labbé, A. (2005). New Dual Descriptor for Chemical Reactivity. The Journal of Physical Chemistry A, 109(1), 205-212.

Morell, C., Grand, A., & Toro-Labbé, A. (2006). Theoretical support for using the Δf(r) descriptor. Chemical Physics Letters, 425(4), 342-346.

Morgon, N. H. (2001). Computação em química teórica: informações técnicas. Química Nova, 24, 676-682.

Obayes, H. R., Alwan, G. H., Alobaidy, A. H., Al-Amiery, A. A., Kadhum, A. A., & Mohamad, A. B. (2014). Quantum chemical assessment of benzimidazole derivatives as corrosion inhibitors. Chem Cent J, 8(1), 21.

Obi-Egbedi, N. O., & Obot, I. B. (2013). Xanthione: A new and effective corrosion inhibitor for mild steel in sulphuric acid solution. Arabian Journal of Chemistry, 6(2), 211-223.

Obi-Egbedi, N. O., Obot, I. B., & El-Khaiary, M. I. (2011). Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. Journal of Molecular Structure, 1002(1), 86-96.

Obot, I. B., & Obi-Egbedi, N. O. (2010). Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corrosion Science, 52(2), 657-660.

Öğretir, C., Çalış, S., Bereket, G., & Berber, H. (2003). A theoretical search on metal–ligand interaction mechanism in corrosion of some imidazolidine derivatives. J Mol Struc-Theochem., 626(1), 179-186.

Öğretir, C., Mihçi, B., & Bereket, G. (1999). Quantum chemical studies of some pyridine derivatives as corrosion inhibitors. Journal of Molecular Structure: THEOCHEM, 488(1), 223-231.

Özcan, M., Karadağ, F., & Dehri, I. (2008). Interfacial Behavior of Cysteine between Mild Steel and Sulfuric Acid as Corrosion Inhibitor. Acta Physico-Chimica Sinica, 24(8), 1387-1392.

Parr, R. G., & Chattaraj, P. K. (1991). Principle of maximum hardness. Journal of the American Chemical Society, 113(5), 1854-1855.

Parr, R. G., Szentpály, L. v., & Liu, S. (1999). Electrophilicity Index. J Am Chem Soc., 121(9), 1922-1924.

Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York: Oxford University Press.

Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533-3539.

Pearson, R. G. (1987). Recent advances in the concept of hard and soft acids and bases. J Chem Educ., 64(7), 561.

Pearson, R. G. (1989). Absolute electronegativity and hardness: applications to organic chemistry. The Journal of Organic Chemistry, 54(6), 1423-1430.

Pérez, P., Domingo, L. R., José Aurell, M., & Contreras, R. (2003). Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 59(17), 3117-3125.

Quattrociocchi, D. G. S., Inocêncio, N. S., Oliveira, A. R., & Paes, L. W. C. (2020). Estudo teórico da relação dos orbitais de fronteira com eficiência de inibição de compostos modelo de derivados da 2-Aminopirazina. Brazilian Journal of Development, 6(3), 13544-13560.

Quraishi, M. A., & Sardar, R. (2003). Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles. Materials Chemistry and Physics, 78(2), 425-431.

Radovanović, M. B., Tasić, Ž. Z., Mihajlović, M. B. P., Simonović, A. T., & Antonijević, M. M. (2019). Electrochemical and DFT studies of brass corrosion inhibition in 3% NaCl in the presence of environmentally friendly compounds. Scientific Reports, 9(1), 16081.

Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899-926.

Rodríguez-Valdez, L. M., Villamisar, W., Casales, M., González-Rodriguez, J. G., Martínez-Villafañe, A., Martinez, L., et al. (2006). Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors. Corrosion Science, 48(12), 4053-4064.

Şahin, M., Gece, G., Karcı, F., & Bilgiç, S. (2008). Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. J Appl Electrochem., 38(6), 809-815.

Salima, K. A., Wassan, B. A., & Anees, A. K. (2019). Synthesis and investigations of heterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid. Int. J. Ind. Chem., 10(2), 159-173.

Salman, T. A., Samawi, K. A., & Shneine, J. K. (2019). Electrochemical and Computational Studies for Mild Steel Corrosion Inhibition by Benzaldehydethiosemicarbazone in Acidic Medium. Port Electrochimica Acta., 37, 241-255.

Sanderson, R. T. (1952). An Interpretation of Bond Lengths in Alkali Halide Gas Molecules. Journal of the American Chemical Society, 74(1), 272-274.

Sanderson, R. T. (1955). Partial Charges on Atoms in Organic Compounds. Science, 121(3137), 207-208.

Sathiyapriya, T., Rathika, G., & Dhandapani, M. (2019). Quantum Chemical Approach for the Study of the Phytoconstituents of Araucaria heterophylla Gum (AHG) as Corrosion Inhibitor Using Density Functional Theory (DFT). Journal of Bio- and Tribo-Corrosion, 5(3), 64.

Singh, A., Ansari, K. R., Quraishi, M. A., Kaya, S., & Banerjee, P. (2019). The effect of an N-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium. New Journal of Chemistry, 43(16), 6303-6313.

Solmaz, R. (2014). Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene)rhodanine. Corros Sci., 79, 169-176.

Stoyanova, A., Petkova, G., & Peyerimhoff, S. D. (2002). Correlation between the molecular structure and the corrosion inhibiting effect of some pyrophthalone compounds. Chemical Physics, 279(1), 1-6.

Swetha, G. A., Sachin, H. P., Guruprasad, A. M., & Prasanna, B. M. (2019). Rizatriptan Benzoate as Corrosion Inhibitor for Mild Steel in Acidic Corrosive Medium: Experimental and Theoretical Analysis. Journal of Failure Analysis and Prevention, 19(4), 1113-1126.

Tang, Y., Zhang, F., Hu, S., Cao, Z., Wu, Z., & Jing, W. (2013). Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corrosion Science, 74, 271-282.

Tourabi, M., Nohair, K., Traisnel, M., Jama, C., & Bentiss, F. (2013). Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corrosion Science, 75, 123-133.

Turcio-Ortega, D., Pandiyan, T., Cruz, J., & Garcia-Ochoa, E. (2007). Interaction of Imidazoline Compounds with Fen (n = 1−4 Atoms) as a Model for Corrosion Inhibition: DFT and Electrochemical Studies. The Journal of Physical Chemistry C, 111(27), 9853-9866.

Verma, C., Verma, D. K., Ebenso, E. E., & Quraishi, M. A. (2018). Sulfur and phosphorus heteroatom-containing compounds as corrosion inhibitors: An overview. Heteroatom Chem., 29(4), e21437.

Vinutha, M. R., & Venkatesha, T. V. (2016). Review on Mechanistic Action of Inhibitors on Steel Corrosion in Acidic Media. Portugaliae Electrochimica Acta, 34, 157-184.

Vosta, J., & Eliásek, J. (1971). Study on corrosion inhibition from aspect of quantum chemistry. Corrosion Science, 11(4), 223-229.

Wang, D., Li, S., Ying, Y., Wang, M., Xiao, H., & Chen, Z. (1999). Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corrosion Science, 41(10), 1911-1919.

Wazzan, N., Obot, I. B., & Faidallah, H. (2018). Experimental and theoretical evaluation of some synthesized imidazolidine derivatives as novel corrosion inhibitors for X60 steel in 1 M HCl solution. J Adhes Sci Technol., 32(23), 2569-2589.

Yadav, M., Behera, D., Kumar, S., & Sinha, R. R. (2013). Experimental and Quantum Chemical Studies on the Corrosion Inhibition Performance of Benzimidazole Derivatives for Mild Steel in HCl. Industrial & Engineering Chemistry Research, 52(19), 6318-6328.

Yang, W., & Parr, R. G. (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82(20), 6723.

Zarrouk, A., Hammouti, B., Dafali, A., Bouachrine, M., Zarrok, H., Boukhris, S., et al. (2014). A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. Journal of Saudi Chemical Society, 18(5), 450-455.

Zhang, F., Tang, Y., Cao, Z., Jing, W., Wu, Z., & Chen, Y. (2012). Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corrosion Science, 61, 1-9.

Zhao, X., Chen, C., Sun, Q., Li, Y., & Yu, H. (2019). Molecular structure optimization design of inhibitors based on frontier orbitals theory. Applied Surface Science, 494, 895-907.

Publicado

12/12/2020

Cómo citar

SILVA, A. D. da .; NASCIMENTO, G. X. do .; QUATTROCIOCCHI, D. G. S. .; MARTINAZZO, A. P. .; PAES, L. W. C. . Propiedades químicas cuánticas utilizando el método DFT: una herramienta teórica aplicada en el estudio de los inhibidores de corrosión. Research, Society and Development, [S. l.], v. 9, n. 12, p. e2291210499, 2020. DOI: 10.33448/rsd-v9i12.10499. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10499. Acesso em: 8 ene. 2025.

Número

Sección

Ingenierías